Skip to main content
Log in

Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study aims to form a dynamic layer of the magnetic protective layer (f- Fe3O4/PDDA) on a surface of cellulose acetate (CA) membrane to prevent direct membrane-foulant interactions during an ultrafiltration process. To this end, Fe3O4 nanoparticles with an approximate size of 151.8 ± 8.2 nm were spin-coated on the surface of CA membrane to provide magneto-induced actuation motions of the magnetic nano-colloid in 3-dimensional space, with the help of an external magnetic field (magnetic rod). ATR-FTIR, QCM-D, and cross-flow filtration of this magnetic-responsive membrane were investigated to determine its influences on surface fouling by humic acid solutions. In fact, ATR-FTIR and QCM-D analyses have demonstrated a minimum membrane fouling for the magnetic-responsive membrane that operated under the influence of an oscillating magnetic field. Cross-flow filtration results showed a practically higher permeation (retaining 54% of the initial flux at its steady-flow) and humic acid rejection (more than 85%) in the presence of an oscillating magnetic field compared to its performance in the absence of an oscillating magnetic field. Findings from this magnetically responsive membranes could represent a new class of fouling-resistant membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nazri NAM, Lau WJ, Padaki M, Ismail AF (2014) A facile modification approach for polyacrylonitrile-based UF hollow fiber membrane utilizing polyacrylonitrile-g-poly(vinyl alcohol) graft copolymer. J Polym Res 21:594

    Article  Google Scholar 

  2. Mahdavi H, Norouzian S (2018) Preparation and characterization of modified ultrafiltration nylon 6 membrane modified by poly (acrylamide-co-maleic anhydride). J Polym Res 25

  3. Ostrowska-Czubenko J, Gierszewska M, Pieróg M (2015) pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling. J Polym Res 22:153

    Article  Google Scholar 

  4. Hernández S, Saad A, Ormsbee L, Bhattacharyya D (2016) Chapter 16 - nanocomposite and responsive membranes for water treatment. In: Hankins NP, Singh R (eds) Emerging membrane Technology for Sustainable Water Treatment. Elsevier Boston, pp 389–431

    Chapter  Google Scholar 

  5. López-Roldán R, Rubalcaba A, Martin-Alonso J, González S, Martí V, Cortina JL (2016) Assessment of the water chemical quality improvement based on human health risk indexes: application to a drinking water treatment plant incorporating membrane technologies. Sci Total Environ 540:334–343

    Article  Google Scholar 

  6. Dutta K, De S (2017) Smart responsive materials for water purification: an overview. J Mater Chem A 5:22095–22112

    Article  CAS  Google Scholar 

  7. Zhao Y, Zhao H, Chen L, Feng X, Zhang Q, Wang J, Zhang R (2013) Thermo-responsive modification and properties study of PVDF flat membrane. J Polym Res 20:58

    Article  CAS  Google Scholar 

  8. Zhao Y, Bai J, Feng X, Chen L, Shen X, Liu M, Li J (2013) Properties of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) membranes prepared by alkali treatment. J Polym Res 20:32

    Article  Google Scholar 

  9. Wandera D, Wickramasinghe SR, Husson SM (2010) Stimuli-responsive membranes. J Membr Sci 357:6–35

    Article  CAS  Google Scholar 

  10. Chu L, Xie R, Ju X (2011) Stimuli-responsive membranes: smart tools for controllable mass-transfer and separation processes. Chin J Chem Eng 19:891–903

    Article  CAS  Google Scholar 

  11. Yang Q, Himstedt HH, Ulbricht M, Qian X, Ranil Wickramasinghe S (2013) Designing magnetic field responsive nanofiltration membranes. J Membr Sci 430:70–78

    Article  CAS  Google Scholar 

  12. Low SC, Ng QH (2019) Progress of stimuli responsive membrane in water treatment. In: Ismail AF, Al-Ahmed A (eds) Lau WJ, Arun M Isloor. Advanced Nanomaterials for Membrane Synthesis and Its Applications. Elsevier Inc. Amsterdam, Netherlands

    Google Scholar 

  13. Husson SM (2012) Synthesis Aspects in the Design of Responsive Membranes. In: Bhattacharyya D, Schafer T, Wickramasinghe SR, Daunert S (eds) Responsive Membranes and Materials. John Wiley & Sons, Ltd Chichester, West Sussex, England

  14. Karppi J, Åkerman S, Åkerman K, Sundell A, Penttilä I (2010) Adsorption of metal cations from aqueous solutions onto the pH responsive poly(vinylidene fluoride grafted poly(acrylic acid) (PVDF-PAA) membrane. J Polym Res 17:71–76

  15. Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC (2014) Efficacy evaluation of the antifouling magnetite-PES composite membrane through QCM-D and magnetophoretic filtration performances. Sep Purif Technol 132:138–148

    Article  CAS  Google Scholar 

  16. Jian P, Yahui H, Yang W, Linlin L (2006) Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J Membr Sci 284:9–16

    Article  CAS  Google Scholar 

  17. Wang R, Chen Y, Xie H, Kai G, Wang Z, Pan J (2011) Polysaccharide separation mechanism in polysulfone-Fe3O4 magnetic composite membranes. Chin Sci Bull 56:1951–1956

    Article  CAS  Google Scholar 

  18. Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC (2015) Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation. J Membr Sci 493:134–146

    Article  CAS  Google Scholar 

  19. Ng QH, Lim JK, Ahmad AL, Low SC (2016) Stability and fouling mechanism of magnetophoretic-actuated PES composite membrane in pH-dependent aqueous medium. J Membr Sci 508:40–50

    Article  CAS  Google Scholar 

  20. Feng M, Meng F, Pu Z, Jia K, Liu X (2015) Introducing magnetic-responsive CNT/Fe3O4composites to enhance the mechanical properties of sulfonated poly(arylene ether nitrile) proton-exchange membranes. J Polym Res 22:37

    Article  Google Scholar 

  21. Lin X, Nguyen Quoc B, Ulbricht M (2016) Magnetoresponsive poly(ether sulfone)-based Iron oxide cum hydrogel mixed matrix composite membranes for switchable molecular sieving. ACS Appl Mater Interfaces 8:29001–29014

    Article  CAS  Google Scholar 

  22. Himstedt HH, Yang Q, Dasi LP, Qian X, Wickramasinghe SR, Ulbricht M (2011) Magnetically activated micromixers for separation membranes. Langmuir 27:5574–5581

    Article  CAS  Google Scholar 

  23. Lin H, Sun W, Zhao C, Na H (2013) Self-assembly of multiwall carbon nanotubes on sulfonated poly (arylene ether ketone) as a proton exchange membrane. J Polym Res 20:306

    Article  Google Scholar 

  24. Yu D-G, Jou C-H, Lin W-C, Yang M-C (2007) Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer. Colloids Surf B: Biointerfaces 54:222–229

    Article  CAS  Google Scholar 

  25. Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC (2014) Enhance the colloidal stability of magnetite nanoparticles using poly(sodium 4-styrene sulfonate) stabilizers. Appl Mech Mater 625:168–171

    Article  Google Scholar 

  26. Lim JK, Majetich SA, Tilton RD (2009) Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 25:13384–13393

    Article  CAS  Google Scholar 

  27. Lim JK, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8:381

    Article  Google Scholar 

  28. Wandrey C, Hernandez-Barajas J, Hunkeler D (1999) Diallyldimethylammonium chloride and its polymers. In: Capek I (ed) Radical polymerization - polyelectrolytes. Springer Verlag, pp 123–183

  29. Zhang S, Shao Y, Yin G, Lin Y (2009) Stabilization of platinum nanoparticle electrocatalysts for oxygen reduction using poly(diallyldimethylammonium chloride). J Mater Chem 19:7995–8001

  30. Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BW, Ahmad AL (2012) Rapid Magnetophoretic separation of microalgae. Small 8:1683–1692

    Article  CAS  Google Scholar 

  31. Fischer D, Dautzenberg H, Kunath K, Kissel T (2004) Poly(diallyldimethylammonium chlorides) and their N-methyl-N-vinylacetamide copolymer-based DNA-polyplexes: role of molecular weight and charge density in complex formation, stability, and in vitro activity. Int J Pharm 280:253–269

    Article  CAS  Google Scholar 

  32. Meissl K, Smidt E, Schwanninger M (2007) Prediction of humic acid content and respiration activity of biogenic waste by means of Fourier transform infrared (FTIR) spectra and partial least squares regression (PLS-R) models. Talanta 72:791–799

    Article  CAS  Google Scholar 

  33. Ma L, Su WY, Gan MY, Li XF, Luo LZ (2011) Effects of FeCl3/ammonium persulfate composite oxidant and magnetic field on film growth rate of polyaniline doped with dodecylbenzenesulfonic acid. J Polym Res 18:595–599

    Article  CAS  Google Scholar 

  34. Mettai B, Mekki A, Merdj F, Sayah ZBD, Soumia KM, Safiddine Z, Mahmoud R, Chehimi MM (2018) In situ chemical deposition of PPy/NDSA and PPy/DBSA layers on QCM electrodes: synthesis, structural, morphological and ammonia sensing performances study. J Polym Res 25:95

    Article  Google Scholar 

  35. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  36. Li N, Lee HK (2001) Solid-phase extraction of polycyclic aromatic hydrocarbons in surface water: negative effect of humic acid. J Chromatogr A 921:255–263

    Article  CAS  Google Scholar 

  37. Rodrigues A, Brito A, Janknecht P, Proenca MF, Nogueira R (2009) Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration. J Environ Monit 11:377–382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the financial support granted by Universiti Sains Malaysia RUI grant (814230).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siew Chun Low or Qi Hwa Ng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, S.C., Ng, Q.H. & Tan, L.S. Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating. J Polym Res 26, 70 (2019). https://doi.org/10.1007/s10965-019-1734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1734-4

Keywords

Navigation