Skip to main content

Advertisement

Log in

Synthesis of rGO/TiO2/PEDOT nanocomposites, supercapacitor device performances and equivalent electrical circuit models

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new nanocomposite electrode incorporating poly(3,4-ethylenedioxythiophene) (PEDOT) within the nanocomposite film of the reduced graphene oxide / Titanium dioxide (TiO2) was synthesized to be used in supercapacitor devices. We used constant EDOT monomer for in-situ polymerization and different initial monomer concentration ratio of [rGO]o/[TiO2]o = 1/1, ½ and 1/5. The obtained nanocomposites were examined by FTIR-ATR, UV-vis, SEM-EDX, TGA-DTA, BET surface areas and pore distribution, XRD, TEM, AFM, CV, GCD and EIS analyses. The results showed that graphene oxide was successfully reduced to rGO by means of the microwave-assisted method. It was confirmed by the increases in the specific capacitance of (Csp = 652 F/g) at 1 mV/s for the rGO/TiO2/PEDOT nanocomposite at [rGO]o/[TiO2]o = 1/5. This was related to the pore size (~33.50 nm) of the material for rGO/TiO2/PEDOT at [rGO]o/[TiO2]o = 1/5 obtained from BET analysis. The other Csp values were 475.33 F/g for [rGO]o/[TiO2]o = 1/2, 114.09 F/g for rGO/PEDOT and 48.02 F/g for [rGO]o/[TiO2]o = 1/1. Equivalent circuit model of Rct(CdlRct) was analyzed via ZSimpWin and TINA programmes. A facile and inexpensive approach for a ternary nanocomposite synthesis of rGO/TiO2/PEDOT was presented for future supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhang YZ, Ding HY, Zhang ML (2008) Hydrous-ruthenium oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors. Thin Solid Films 516:7381–7385

    Google Scholar 

  2. Olad A, Gharekhani H (2016) Study on the capacitive performance of polyaniline / activated carbon nanocomposite for supercapacitor application. J Polym Res 23:147

    Google Scholar 

  3. Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes effect of film thickness. J Power Sources 134:148–152

    CAS  Google Scholar 

  4. Prasanna BP, Avadhani DN, Chaitra K, Nagaraju N, Katyayini N (2018) Synthesis of polyaniline / MWCNTs by interfacial polymerization for superior hybrid supercapacitance performance. J Polym Res 25:123

    Google Scholar 

  5. Fan HS, Wang H, Zhao N, Xu J, Pan F (2014) Nano-porous architectore of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance. Sci Rep 4(article number):1–7

    Google Scholar 

  6. Biswas S, Drzal LT (2010) Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671

    CAS  Google Scholar 

  7. Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide / polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306

    CAS  Google Scholar 

  8. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    CAS  PubMed  Google Scholar 

  9. Mini PA, Balakrishnan A, Nair SV, Subramanian KRV (2011) Highly supercapacitive electrodes made of graphene poly(pyrrole). Chem Commun 47:5733–5755

    Google Scholar 

  10. Wang H, Hao Q, Yang LXL, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161

    CAS  Google Scholar 

  11. Liu S, Tian J, Wang L, Luo Y, Lu W, Sun X (2011) Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens Bioelectron 26:4491–4496

    CAS  PubMed  Google Scholar 

  12. Shang L, Li Z, Meng A, Xu Q (2018) Ultrafast responsive and higly sensitive enzyme-free glucose sensor based on a novel Ni(OH)2@PEDOT-rGO nanocomposite. Sensors Actuators B Chem 254:1206–1215

    Google Scholar 

  13. Zhang XY, Li HP, Cui XL, Lin YH (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806

    CAS  Google Scholar 

  14. Zhang N, Zhang YH, Pan XY, Yang MQ, Xu YJ (2012) Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J Phys Chem C 116:18023–18031

    CAS  Google Scholar 

  15. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  PubMed  Google Scholar 

  16. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    CAS  PubMed  Google Scholar 

  17. Zhu Y, Murali S, Stoller MD, Garesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommas M, Su D, Stach EA, Ruoff RS (2011) Carbon based supercapacitors produced by activation of graphene. Science 332:1537–1541

    CAS  PubMed  Google Scholar 

  18. Si W, Lei W, Han Z, Zhang Y, Hao Q, Xia M (2014) Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene oxide composites. Sensors Actuators B Chem 193:823–829

    CAS  Google Scholar 

  19. Lu L, Zhang Q, Xu J, Wen Y, Duan X, Yu H, Wu L, Nie T (2013) A facile one-step redox route for the synthesis of graphene/poly(3-4 ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sensors Actuators B Chem 181:567–574

    CAS  Google Scholar 

  20. Byranvand MM, Kharat AN, Fatholahi L, Beiranvand ZM (2013) A review on synthesis of nano-TiO2 via different methods. Journal of Nanostructures 3:1–9

    Google Scholar 

  21. Stengl V, Bakardjieva S, Grygar TM, Bludska J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanved photocatalytic materials. Chem Cent J 7:41–53

    PubMed  PubMed Central  Google Scholar 

  22. Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad SK (2007) Sonochemical preparation of TiO2 nanoparticles. Mat Let 61:4559–4561

    CAS  Google Scholar 

  23. Shinde PS, Bhosale CH (2008) Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells. J Anal Appl Pyrolysis 82:83–88

    CAS  Google Scholar 

  24. Andersson M, Oesterlund L, Ljungstroem S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106:10674–10679

    CAS  Google Scholar 

  25. Tan WW, Chen JM, Zhou XW, Zhong JB, Lin YA, Li XP, Xiao XR (2009) Preparation of nanocrystalline TiO2 thin film at low temperature and its application in dye-sensitized solar cell. J Solid State Electrochem 13:651–656

    CAS  Google Scholar 

  26. Corradi AB, Bondioli F, Focher B, Ferrari AM, Grippo C, Mariani E, Villa C (2005) Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders. J Am Ceram Soc 88:2639–2641

    CAS  Google Scholar 

  27. Groenendaal LB, Zotti G, Aubert PH, Waybright SM, Reynolds JR (2003) Electrochemistry of poly(3,4- alkylenedioxythiophene) derivatives. Adv Mater 15:855–879

    CAS  Google Scholar 

  28. Ha YH, Nikolov N, Plooack SK, Mastrangelo J, Martin BD, Shashidhar R (2004) Towards a transparent, highly conductive poly(3,4-ethylenedioxythiophene). Adv Funct Mater 14:615–622

    CAS  Google Scholar 

  29. Biancardo M, West K, Krebs FC (2007) Quasi-solid state dye-sensitized solar cells: Pt and PEDOT:PSS counter electrodes applied to gel electrolyte assemblies. J Photochem Photobiol A Chem 187:395–401

    CAS  Google Scholar 

  30. Ahmad S, Deepa M, Singh S (2007) Electrochemical synthesis and surface characterization of poly(3,4-ethylenedioxythiophene) films grown in an ionic liquid. Langmuir 23:11430–11433

    CAS  PubMed  Google Scholar 

  31. Jin L, Wang T, Feng ZQ, Leach MK, Wu JH, Mo SJ, Jiang Q (2013) A facile approach for the fabrication of core-shell PEDOT nanofiber mats with superior mechanical properties and biocompatibility. J Mat Chem B 1:1818–1825

    CAS  Google Scholar 

  32. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) Electrochemical performance of polyaniline nanofibers and polyaniline / multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171:1062–1068

    CAS  Google Scholar 

  33. Saxena AP, Deepa M, Joshi AG, Bhandari S, Srivastava AK (2011) Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. ACS Appl Mater Interfaces 3:1115–1126

    CAS  PubMed  Google Scholar 

  34. Alvi F, Ram MK, Basrayaka PA, Stefanakos E, Goswami Y, Kumar A (2011) Graphene-pdyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim Acta 56:9406–9412

    CAS  Google Scholar 

  35. Mcgrail BT, Rodier BJ, Pentzer E (2014) Rapid functionalization of graphene oxide in water. Chem Mater 26:5806–5811

    CAS  Google Scholar 

  36. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nquyen ST, Ruoff RS (2006) Graphene based composite materials. Nature 442:282–286

    CAS  Google Scholar 

  37. Mustafa MN, Shafie S, Zainal Z, Sulaiman Y (2017) Poly(3,4-ethylenedioxythiophene) doped with various carbon-based materials as counter electrodes for dye sensitized solar cells. Mater Des 136:249–257

    CAS  Google Scholar 

  38. Mustafa MN, Shafie S, Zainal Z, Sulaiman Y (2017) A novel poly(3,4-ethylenedioxythiophene)-graphene oxide / Titanium dioxide composites counter electrode for dye-sensitized solar cell. J Nanomater Article number: 4045672

  39. Dobrzanski LA, Prokowicz MPV, Drygala A, Wierzbicka A, Lukaszkowicz K, Szindler M (2017) Carbon nanomaterials application as a counter electrode for dye-sensitized solar cells. Arch Metall Mater 62:27–32

    CAS  Google Scholar 

  40. Morais A, Alves JPC, Lima FAS, Lira-Cantu M, Nogueira AF (2015) Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers. J Photon Energy 5, 057408(Article number)

  41. Yoo D, Kim J, Kim JH (2014) Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) / graphene composites and their applications in energy harvesting systems. Nano Res 7:717–730

    CAS  Google Scholar 

  42. El-Deen AG, Choi JH, Kim CS, Khalil KA, Almajid AA, Barakat NAM (2015) TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination 361:53–64

    CAS  Google Scholar 

  43. Chen Y, Xu J, Mao Y, Yang Y, Yang W, Li S (2013) Electrochemical performance of graphene -polyethylenedioxythiophene nanocomposites. Mater Sci Eng B 178:1152–1157

    CAS  Google Scholar 

  44. Lee S, Cho MS, Lee H, Nam JD, Lee Y (2012) A facile synthetic route for well defined multilayer films of graphene and PEDOT via on electrochemical method. J Mater Chem 22:1899–1903

    CAS  Google Scholar 

  45. Wang M, Jamal R, Wang Y, Yang L, Liu YF, Abdiryim T (2015) Functianalization of graphene oxide and its composite with poly(3,4-ethylenedioxythiophene) as electrode material for supercapacitors. Nanoscale Res Lett 10:370–381

    PubMed  PubMed Central  Google Scholar 

  46. Liu K, Hu ZL, Xue R, Zhang JR, Zhu JJ (2008) Electrpolymerization of high stable poly(3,4-ethylenedioxythiophene) in ionic liquids and its potential applications in electrochemical capacitor. J Power Sources 179:858–862

    CAS  Google Scholar 

  47. Tang P, Hu G, Gao YJ, Li WJ, Yao SY, Liu ZY, Ma D (2014) The microwave adsorption behavior and microwave-assisted heteroatoms doping of graphene-based nano-carbon materials. Sci Rep 4:5901–5908

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Romadoss A, Kim SJ (2013) Improved activity of a graphene-TiO2 hybrid electrode in electrochemical supercapacitor. Carbon 63:434–445

    Google Scholar 

  49. Dalal J, Gupta A, Lather S, Singh K, Dhawan SK, Ohlan A (2016) Poly(3,4-ethylenedioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding. J Alloys and Compd 682:52–60

    CAS  Google Scholar 

  50. Ohlan A, Singh K, Chandra A, Dhawan SK (2010) Microwave absorption behavior of core-shell structured poly(3,4-ethylenedioxythiophene)-barium ferrite nanocomposites. ACS Appl Mater Interfaces 2:927–933

    CAS  PubMed  Google Scholar 

  51. Liu Y, Sun D, Askari S, Patel J, Macias-Montero M, Mitra S, Zhang R, Lin WF, Mariotti D, Maguire P (2015) Enhanced dispersion of TiO2 nanoparticles in a TiO2/PEDOT:PSS hybrid nanocomposite via plasma-liquid interactions. Sci Rep 5:15765–15776

    PubMed  PubMed Central  Google Scholar 

  52. Balkan T, Sarac AS (2017) Morphological effect of composite TiO2 nanorod-TiO2 nanoparticle / PEDOT:PSS electrodes on triiodide reduction. Express Polym Lett 11:106–116

    CAS  Google Scholar 

  53. Jian JM, Guo XS, Lin LW, Cai Q, Cheng J, Li JP (2013) Gas-sensing characteristics of dielectrophoretically assembled composite film of oxygen plasma-treated SWCNTs and PEDOT/PSS polymer. Sensors Actuators B Chem 178:279–288

    CAS  Google Scholar 

  54. Cho W, We J, Shim BS, Kuon W, Mastroianni SE, Young WS, Kuo CC, Epps TH, Martin DC (2015) Synthesis and characterization of bicontinuous cubic poly(3,4-ethylenedioxythiophene) gyroid (PEDOT GYR) gels. Phys Chem Chem Phys 17:5115–5123

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shin HJ, Jean SS, Im SS (2011) CNT/PEDOT core-shell nanostructures as a counter electrode for dye-sensitized solar cells. Synth Met 161:1284–1288

    CAS  Google Scholar 

  56. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    CAS  PubMed  Google Scholar 

  57. Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @ rGO@ TiO2-catalyzed photo-fentonsystem. Nature 5:10632–10642

    Google Scholar 

  58. Deng F, Pei X, Luo Y, Luo X, Dionysiou DD, Wu S, Luo S (2016) Fabrication of hierarchically porous reduced graphene oxide / SnIn4S8 composites bu a low-temperature co-precipitation strategy and their excellent visible photocatalytic mineralization performance. Catalysts 6:113–131

    Google Scholar 

  59. Nguyen-Phan TD, Pham VH, Chung JS, Chowalla M, Asefa T, Kim WJ, Shin EW (2014) Photocatalytic performance of Sn-doped TiO2/reduced graphene oxide composite materials. Appl Catal A Gen 473:21–30

    CAS  Google Scholar 

  60. Sharma A, Lee BK (2016) Integrated ternary nanocomposite of TiO2 / NiO / reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J Environ Manag 181:563–573

    CAS  Google Scholar 

  61. Zhang J, Xiong Z, Zhao XS (2011) Graphene-metal oxide composites for the degradation of dyes under visible light irradiation. J Mater Chem 21:3634–3640

    CAS  Google Scholar 

  62. Zhang Y, Zhou Z, Chen T, Wang H, Lu W (2014) Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci 26:2114–2122

    Google Scholar 

  63. Tian HC, Liu JQ, Wei DX, Kang XY, Zhang C, Du JC, Yang B, Chen X, Zhu HY, NuLi YN, Yang CS (2014) Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials 35:2120–2129

    CAS  PubMed  Google Scholar 

  64. Pham TA, Kumar NA, Jeong YT (2010) Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles. Synth Met 160:2028–2036

    CAS  Google Scholar 

  65. Zhang Y, Zhou Z, Chen T, Wang H, Lu W (2014) Graphene TiO2 nanocomposites with photocatalytic activity for the degradation of sodium pentachlorophenol. J Environ Sci 26:2114–2122

    Google Scholar 

  66. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances 1. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    CAS  Google Scholar 

  67. Guo F, Creighton M, Chen Y, Hurt R, Kütaots I (2014) Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon 66:476–484

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang L, Jamal R, Zhao Q, Wang M, Abdiryim T (2015) Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue. Nanoscale Res Lett 10:148

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ebrahimi S, Nasiri M, Agbolaghi S, Abbasi F, Sarvari R (2018) A focus on polystyrene tacticity in synthesized conductive PEDOT:PSS thin films. J Polym Res 25:236

    Google Scholar 

  70. Haddad MY, Alharbi HF, Karim MR, Aijaz MO, Alharthi NH (2018) Preparation of TiO2 incorporated polyacylonitrile electrospun nanofibers for adsorption of heavy metal ions. J Polym Res 25(2018):218

    Google Scholar 

  71. Ramadoss A, Kim JS (2013) Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63:434–445

    CAS  Google Scholar 

  72. Thien GSH, Omar FS, Blya NISA, Chiu WS, Lim HN, Yousefi R, Sheini FJ, Huang NM (2014) Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed (0.01) facets and its photoelectrochemical response. Int J Photoenergy. Article number 650583

  73. Stengl V, Bakardjieva S, Grygar TM, Bludska J, Kormunda M (2013) TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Central J 7:41–53

    Google Scholar 

  74. Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620

    CAS  Google Scholar 

  75. Ning X, Zhoung W, Li S, Wang Y, Yang W (2014) High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A 2:8859–8867

    CAS  Google Scholar 

  76. Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synth Metals 209:68–73

    CAS  Google Scholar 

  77. Vigneshwaran P, Kandiban M, Kumar NS, Venkatachalam V, Jayavel R, Potheher IV (2016) A study on the synthesis and charecterization of CoMn2O4 electrode material for supercapacitor aplications. J Mater Sci Mater Electron 27(5):4653–4658

    CAS  Google Scholar 

  78. Qian A, Zhuo K, Choi BN, Lee SJ, Bae JW, Yoo PJ, Chung CH (2016) Capacitance enhancement in supercapacitors by incorporating ultra-long hydrated vanadium-oxide nanobelts into graphene. J Alloys Compds 688:814–821

    CAS  Google Scholar 

  79. Shaheen W, Warsi MF, Shahid M, Khan MA, Asghar M, Ali Z, Sarfraz M, Anwar H, Nadeem M, Shakir I (2016) Carbon coated MoO3 nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim Acta 219:330–338

    CAS  Google Scholar 

  80. Ates M, Uludag N (2012) Synthesis of 5-(3,6-di(thiophene-2-yl)-9H-carbazole-9-yl) pentane-1-amine and electrochemical impedance spectroscopy. Polym Plastics Technol Eng 51:640–646

    CAS  Google Scholar 

  81. Buller S, Karden E, Kok D, De Doncker RW (2002) Modeling the dynamic behavior of supercapacitors using impedance spectroscopy. IEEE Trans Ind Appl 38:1622–1626

    Google Scholar 

  82. Li HL, Wang JX, Chu Q, Wang Z, Zhang FB, Wang SC (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190:578–586

    CAS  Google Scholar 

  83. Gopiraman M, Deng D, Kim BS, Chung IIIM, Kim IS (2017) Three-dimensional cheese-like carbon architecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitor. Appl Surf Sci 409:52–59

    CAS  Google Scholar 

  84. Jiang F, Zhou T, Tan S, Zhu Y, Liu Y, Yuan D (2009) Porous polypyrrole prepared by using nanoscale calcium carbonate as a core for supercapacitance materials. Int J Electrochem Sci 4:1541–1547

    CAS  Google Scholar 

  85. Liu DY, Reynolds JR (2010) Dioxythiophene-based polymer electrodes for supercapacitor modules. ACS Appl Mater Interfaces 2:3586–3593

    CAS  PubMed  Google Scholar 

  86. Lehtimaki S, Suominen M, Damlin P, Tuukkanen S, Kvarnström C, Lupo D (2015) Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl Mater Interfaces 7:22137–22147

    CAS  PubMed  Google Scholar 

  87. Zubair NA, Rahman NA, Lim HN, Sulaiman Y (2017) Production of conductive PEDOT- coated PVA-GO composite nanofibers. Nanoscale Research Letters 12(Article number):113

    PubMed  PubMed Central  Google Scholar 

  88. Drummond R, Zhao S, Howey DA, Durcan SR (2017) Circuit synthesis of electrochemical supercapacitor models. J Energ Stor 10:48–55

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from TUBITAK, Project number: 117 M042. We wish thank to Assoc.Prof.Dr. Murat Turkyilmaz (Trakya Uni., Chemistry Dep., Inorganic Chem. Div., for his TGA/DTA measurements.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Murat Ates.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

1- rGO/TiO2/PEDOT nanocomposites presented as an electrode active material at the supercapacitor.

2- rGO/TiO2/PEDOT nanocomposites were characterized by FTIR-ATR, UV-vis, SEM-EDX, TGA-DTA, BET surface areas and pore distribution, XRD, TEM, AFM, CV, GCD and EIS analysis.

3- A two-electrode design of symmetric supercapacitor device was formed.

Electronic supplementary material

ESM 1

(DOC 1706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Bayrak, Y., Ozkan, H. et al. Synthesis of rGO/TiO2/PEDOT nanocomposites, supercapacitor device performances and equivalent electrical circuit models. J Polym Res 26, 49 (2019). https://doi.org/10.1007/s10965-018-1692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1692-2

Keywords

Navigation