Skip to main content

Synthesis and characterization of thianthrene-containing preimidized soluble polyimide resins and the derived films with high refractive indices and good optical transparency

Abstract

A series of organo-soluble polyimide (PI) resins were prepared from a newly designed and synthesized aromatic thianthrene-containing diamine, 2,7-bis(3-aminophenoxy)thianthrene (APOT) and various aromatic dianhydrides via a one-step high temperature polycondensation procedure with N-methyl-2-pyrrolidone (NMP) as the solvent. The derived PI resins were soluble in polar aprotic solvents, including NMP and N,N- dimethylacetamide (DMAc). For comparison, several unsoluble sulfur-containing PIs were prepared from anotherpara-substituted thianthrene-containing diamine, 2,7-bis(4-aminophenylenesulfanyl)thianthrene (APTT) and aromatic dianhydrides by a two-step polycondensation procedure via poly(amic acid) (PAA) precursors at elevated temperatures as high as 300 °C. Flexible and tough PI films with the tensile strength higher than 88 MPa were successfully cast from the APOT-PI resin solution at a relatively low curing temperature of 250 °C. The meta-substituted molecular skeleton in the APOT- PIs endowed the films good optical transparency with the transmittance higher than 83% at a thickness around 10 um, which was apparently higher than those of the para-substituted APTT-PI analogues. The sulfur-rich thianthrene moiety with high molar refraction endowed the APOT-PI films high refractive indices up to 1.7147 at 632.8 nm and low birefringence in the range of 0.0064–0.0133. In addition, the PI films showed good thermal stability with the glass transition temperatures (Tg) higher than 198.3 °C and 5% weight loss temperatures higher than 510 °C in nitrogen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Liu JG, Ueda M (2009) High refractive index polymers: fundamental research and practical applications. J Mater Chem 19:8907–8919

    CAS  Article  Google Scholar 

  2. Tojo Y, Arakwa Y, Watanabe J, Konishi G (2013) Synthesis of high refractive index and low-birefringence acrylate polymers with a tetraphenylethane skeleton in the side chain. Polym Chem 4:3807–3812

    CAS  Article  Google Scholar 

  3. Kiani H, Nasef MM, Javadi A, Abouzari-Lotf E, Nemati F (2013) Highly refractive, transparent, and solution processable polyamides based on a noncoplanar ortho-substituted sulfonyl-bridged diacid monomer containing chlorine side groups. J Polym Res 20:247

    Article  Google Scholar 

  4. Ogura T, Higashihara T, Ueda M (2010) Development of photosensitive Poly(hydroxyimide) with high refractive index. J Photopolym Sci Technol 23:515–520

    CAS  Article  Google Scholar 

  5. Ho WF, Uddin MA, Chan HP (2009) The stability of high refractive index polymer materials for high-density planar optical circuits. PolymDegrad Stab 94:158–161

    CAS  Article  Google Scholar 

  6. Blakey I, Conley W, George GA, Hill DJT, Liu HP, Rasoul F, Whittaker AK (2006). Proc SPIE 6153:61530H

    Article  Google Scholar 

  7. Liu Y, Lin ZY, Zhao XY, Tuan CC, Moon KS, Yoo S, Jang MG, Wong CP (2014). IEEE Trans Compon Packag Manuf Technol 7:1125–1134

    Article  Google Scholar 

  8. Li DD, Li S, Zhang S, Liu XW, Wong CP (2014) Thermo and dynamic mechanical properties of the high refractive index silicone resin for light emitting diode packaging. IEEE Trans Compon Packag Manuf Technol 4:190–197

    CAS  Article  Google Scholar 

  9. Higashihara T, Ueda M (2015) Recent progress in high refractive index polymers. Macromolecules 48:1915–1929

    CAS  Article  Google Scholar 

  10. Cai B, Sugihara O, Elim HI, Adschiri T, Kaino T (2011) A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites. Appl Phys Express 4:092601

    Article  Google Scholar 

  11. Macdonald EK, Shaver MP (2014). Polym Int 64:6–14

    Article  Google Scholar 

  12. Maheswara M, Oh SH, Ju JJ, Park SK, Do JY (2010) High refractive index of transparent acrylate polymers functionalized with alkyl sulfur groups. Polym J 42:249–255

    CAS  Article  Google Scholar 

  13. Lu CL, Yang B (2009) High refractive index organic–inorganic nanocomposites: design, synthesis and application. J Mater Chem 19:2884–2901

    Article  Google Scholar 

  14. Minami Y, Murata K, Watase S, Matsumoto A, Ogura T, Matsukawa K (2013) Optical properties of photo-cured polyacrylate thin films containing bis-phenylfluorene modified zirconia nanoparticles. J Photopolym Sci Technol 26:491–494

    CAS  Article  Google Scholar 

  15. Chau JLH, Lin YM, Li AK, Su WF, Chang KS, Hsu SLC, Li TL (2007) Transparent high refractive index nanocomposite thin films. Mater Lett 61:2908–2910

    CAS  Article  Google Scholar 

  16. Tao P, Li Y, Rungta A, Viswanath A, Gao JN, Benicewicz BC, Siegel RW, Schadler LS (2011) TiO2 nanocomposites with high refractive index and transparency. J Mater Chem 21:18623–28629

    CAS  Article  Google Scholar 

  17. Tsai CL, Liou GS (2015) Highly transparent and flexible polyimide/ZrO2nanocomposite optical films with a tunable refractive index and Abbe number. Chem Commun 51:13523–13526

    CAS  Article  Google Scholar 

  18. Ullah MH, Kim JH, Ha CS (2008) Highly transparent o-PDA functionalized ZnS-polymer nanocomposite thin films with high refractive index. Mater Lett 62:2249–2252

    CAS  Article  Google Scholar 

  19. Tsai CM, Hsu SH, Ho CC, Tu YC, Tsai HC, Wang CA, Su WF (2014) High refractive index transparent nanocomposites prepared by in situ polymerization. J Mater Chem, C 2:2251–2258

    CAS  Article  Google Scholar 

  20. Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465

    CAS  Article  Google Scholar 

  21. Matsuura T, Ando S, Sasaki S, Yamamoto F (1994) Polyimides derived from 2,2'-Bis(trifluoromethyl)-4,4'-diaminobiphenyl. 4. optical properties of fluorinated polyimides for optoelectronic components. Macromolecules 27:6665–6670

    CAS  Article  Google Scholar 

  22. Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) High refractive index polyimides derived from 2,7-Bis(4-aminophenylenesulfanyl)thianthrene and aromatic dianhydrides. Macromolecules 40:4614–4620

    CAS  Article  Google Scholar 

  23. Liu JG, Nakamura Y, Terraza CA, Suzuki Y, Shibasaki Y, Ando S, Ueda M (2008) Highly refractive polyimides derived from 2,8-Bis(p-aminophenylenesulfanyl)dibenzothiophene and aromatic dianhydrides. Macromol Chem Phys 209:195–203

    CAS  Article  Google Scholar 

  24. Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) Synthesis and characterization of highly refractive polyimides from 4,4′-thiobis[(p-phenylenesulfanyl)aniline] and various aromatic tetracarboxylic dianhydrides. J Polym Sci, Part A: Polym Chem 45:5606–5617

    CAS  Article  Google Scholar 

  25. Suzuki Y, Liu J, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2008) Synthesis of highly refractive and transparent polyimides derived from 4,4′-[p-Sulfonylbis(phenylenesulfanyl)]diphthalic anhydride and various sulfur-containing aromatic diamines. Polym J 40:414–420

    CAS  Article  Google Scholar 

  26. Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) Synthesis and characterization of high refractive index polyimides derived from 4,4′-(p-Phenylenedisulfanyl)dianiline and various aromatic tetracarboxylic dianhydrides. Polym J 39:543–550

    CAS  Article  Google Scholar 

  27. Liu JG, Nakamura Y, Suzuki Y, Shibasaki Y, Ando S, Ueda M (2007) Highly refractive and transparent polyimides derived from 4,4‘-[m-Sulfonylbis(phenylenesulfanyl)]diphthalic anhydride and various sulfur-containing aromatic diamines. Macromolecules 40:7902–7909

    CAS  Article  Google Scholar 

  28. Edson JB, Knauss DM (2004) Thianthrene as an activating group for the synthesis of poly(aryl ether thianthrene)s by nucleophilic aromatic substitution. J Polym Sci, Part A: Polym Chem 42:6353–6363

    CAS  Article  Google Scholar 

  29. Liu JG, Nakamura Y, Ogura T, Shibasaki Y, Ando S, Ueda M (2008) Optically transparent sulfur-containing Polyimide−TiO2Nanocomposite films with high refractive index and negative pattern formation from Poly(amic acid)−TiO2Nanocomposite film. Chem Mater 20:273–281

    CAS  Article  Google Scholar 

  30. Yang J, Fang J, Meichin N, Tanaka K, Okamoto K (2001) Gas permeation properties of thianthrene-5,5,10,10-tetraoxide-containing polyimides. Polymer 42:2021–2029

    CAS  Article  Google Scholar 

  31. Friedrich R, Janietz S, Wedel A (1999) Synthesis and characterization of new thianthrene-containing polymers. Macromol Chem Phys 200:731–738

    CAS  Article  Google Scholar 

  32. Raghu AV, Anita G, Barigaddi YM, Gadaginamath GS, Aminabhavi TM (2007) Synthesis and characterization of novel polyurethanes based on 2,6-bis(4-hydroxybenzylidene) cyclohexanone hard segments. J Appl Polym Sci 104:81–88

    CAS  Article  Google Scholar 

  33. Raghu AV, Gadaginamath GS, Mathew N, Halligudi SB, Aminabhavi TM (2007). J Appl Polym Sci 106:299–308

    CAS  Article  Google Scholar 

  34. Suhas DP, Jeong HM, Aminabhavi TM, Raghu AV (2014). PolymEngSci 54:24–32

    CAS  Google Scholar 

  35. Ni HJ, Liu JG, Wang ZH, Yang SY (2015) A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. J Ind Eng Chem 28:16–27

    CAS  Article  Google Scholar 

  36. Hasegawa M (2017) Development of solution-processable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion. Polymers 9:520

    Article  Google Scholar 

  37. Watson KA, Palmieru FL, Connell JW (2002) Space environmentally stable polyimides and copolyimides derived from [2,4-Bis(3-aminophenoxy)phenyl]diphenylphosphine oxide. Macromolecules 35:4968–4974

    CAS  Article  Google Scholar 

  38. Russell TP, Gugger H, Swalen JD (1983) In-plane orientation of polyimide. J Polym Sci Polym Phys Ed 21:1745–1756

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Fundamental Research Funds of China University of Geosciences (No. 2652017345) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingang Liu or Xiumin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, J., Wu, X. et al. Synthesis and characterization of thianthrene-containing preimidized soluble polyimide resins and the derived films with high refractive indices and good optical transparency. J Polym Res 26, 2 (2019). https://doi.org/10.1007/s10965-018-1664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1664-6

Keywords

  • Polyimide
  • Thianthrene
  • High refractive index
  • Optical properties
  • Thermal properties