Skip to main content
Log in

Effects of β-nucleating agent and graphene oxide on the crystallization and polymorphic composition of isotactic polypropylene / graphene oxide composites for bridge pavement

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To control the polymorphic and crystallization behavior of β-nucleated isotactic polypropylene / graphene oxide (β-iPP/GO) composites for bridge pavement, the roles of β-nucleating agent (β-NA) concentration and GO content in the polymorphic crystallization behavior, morphology and crystallization kinetics were studied by means of differential scanning calorimentry (DSC), wide-angle X-ray diffraction (WAXD), scanning electronic microscopy (SEM). Results revealed that with the increase of β-NA concentration, the crystallization temperature, the percentage of β-phase βc and relative degree of crystallinity Xc increased evidently. Moreover, the crystallite sizes decreased, and the crystallization activation energy △E decreased, reflecting the strong nucleation effect of the β-NA to the composites; On the other hand, as the GO content increased, the crystallization temperatures and relative degree of crystallinity Xc also increased slightly. Interestingly, GO exhibited strong α-nucleation effect, which was not favorable for formation of β-phase. When the GO content was 2.0 wt%, unusual small banding patterned crystals were observed. In general, to control the polymorphic behavior and morphology of the β-iPP/GO composites, both β-NA concentration and GO content were very important factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen L (1995) Comparative toughness testing of Fiber reinforced concrete. Special Publication 155:41–76

    Google Scholar 

  2. Hesami S, Salehi Hikouei I, Emadi SAA (2016) Mechanical behavior of self-compacting concrete pavements incorporating recycled tire rubber crumb and reinforced with polypropylene fiber. J Clean Prod 133:228–234

    Article  CAS  Google Scholar 

  3. Zhang HG, Wang XS, Hao PW (2012) Study on the performance of polypropylene Fiber concrete. Appl Mech Mater 174-177:91–96

    Article  CAS  Google Scholar 

  4. Gao S-L, Mäder E (2002) Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos A: Appl Sci Manuf 33(4):559–576

    Article  Google Scholar 

  5. Toutanji HA (1999) Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Constr Build Mater 13(4):171–177

    Article  Google Scholar 

  6. Hao Z, Li L, Liao X, Sheng X, Zhang Y (2018) Preparation and toughening performance investigation of epoxy resins containing carbon nanotubes modified with hyperbranched polyester. Polym Bull 75(3):1013–1026

    Article  CAS  Google Scholar 

  7. Shuan-fa C, Deng-liang Z, Jie Z, Feng L (2001) The study of the road performance of the polypropylene fiber concrete. Northeast Highway 24(2):23–25

    Google Scholar 

  8. Kang J, Yang F, Wu T, Li H, Liu D, Cao Y, Xiang M (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 125(4):3076–3083

    Article  CAS  Google Scholar 

  9. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M (2012) Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler–Natta isotactic polypropylene. Eur Polym J 48(2):425–434

    Article  CAS  Google Scholar 

  10. Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19(12):1–11

    Article  CAS  Google Scholar 

  11. Han W, Liao X, Yang Q, Li G, He B, Zhu W, Hao Z (2017) Crystallization and morphological transition of poly(l-lactide)–poly(ε-caprolactone) diblock copolymers with different block length ratios. RSC Adv 7(36):22515–22523

    Article  CAS  Google Scholar 

  12. Hao Z, Tan Y, Zhang X, Zhang F (2009) Epithermal ageing mechanism of gussasphalt. Journal of Wuhan University of Technology-Mater Sci Ed 24(3):466–470

    Article  CAS  Google Scholar 

  13. Zeng F, Chen J, Yang F, Kang J, Cao Y, Xiang M (2018) Effects of polypropylene orientation on mechanical and heat seal properties of polymer-aluminum-polymer composite films for pouch lithium-ion batteries. Materials 11(1):144

    Article  Google Scholar 

  14. Chae H-R, Lee J, Lee C-H, Kim I-C, Park P-K (2015) Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J Membr Sci 483:128–135

    Article  CAS  Google Scholar 

  15. Wang J, Xu R, Yang F, Kang J, Cao Y, Xiang M (2018) Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. J Membr Sci 556:374–383

    Article  CAS  Google Scholar 

  16. Zhang S, Liu P, Zhao X, Xu J (2018) Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J Polym Res 25(3):65

    Article  Google Scholar 

  17. Ahmadian-Alam L, Teymoori M, Mahdavi H (2017) Graphene oxide-anchored reactive sulfonated copolymer via simple one pot condensation polymerization: proton-conducting solid electrolytes. J Polym Res 25(1):13

    Article  Google Scholar 

  18. Konwer S, Begum A, Bordoloi S, Boruah R (2017) Expanded graphene-oxide encapsulated polyaniline composites as sensing material for volatile organic compounds. J Polym Res 24(3):37

    Article  Google Scholar 

  19. Msomi PF, Nonjola P, Ndungu PG, Ramontja J (2018) Quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/Polysulfone anion exchange membrane reinforced with graphene oxide for methanol alkaline fuel cell application. J Polym Res 25(6):143

    Article  Google Scholar 

  20. Bao R-Y, Cao J, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2014) Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J Mater Chem A 2(9):3190–3199

    Article  CAS  Google Scholar 

  21. Kmetty Á, Bárány T, Karger-Kocsis J (2012) Injection moulded all-polypropylene composites composed of polypropylene fibre and polypropylene based thermoplastic elastomer. Compos Sci Technol 73:72–80

    Article  CAS  Google Scholar 

  22. Karger-Kocsis J, Wanjale SD, Abraham T, Bárány T, Apostolov AA (2010) Preparation and characterization of polypropylene homocomposites: exploiting polymorphism of PP homopolymer. J Appl Polym Sci 115(2):684–691

    Article  CAS  Google Scholar 

  23. Yansong, Y.; Fangxinyu, Z.; Jinyao, C.; Jian, K.; Feng, Y.; Ya, C.; Ming, X., Regulating polycrystalline behavior of the β-nucleated isotactic polypropylene/graphene oxide composites by melt memory effect. Polymer Composites 2018, https://doi.org/10.1002/pc.24745

  24. Yansong, Y.; Fangxinyu, Z.; Jinyao, C.; Jian, K.; Feng, Y.; Ya, C.; Ming, X., Isothermal Crystallization Kinetics and Subsequent Melting Behavior of β-Nucleated Isotactic Polypropylene / Graphene Oxide Composites with Different Ordered Structure. Polymer International 2018, https://doi.org/10.1002/pi.5625

  25. Xiong B, Chen R, Zeng F, Kang J, Men Y (2018) Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: in-situ ultra-small angle X-ray scattering study. J Membr Sci 545:213–220

    Article  CAS  Google Scholar 

  26. Qiyan Z, Hongmei P, Jian K, Ya C, Ming X (2017) Effects of melt structure on non-isothermal crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. Polym Eng Sci 57(9):989–997

    Article  Google Scholar 

  27. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and [beta]-isotactic polypropylene. Polymer 51(1):249–256

    Article  CAS  Google Scholar 

  28. Varga J (2002) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. Journal of Macromolecular Science, Part B 41(4):1121–1171

    Article  Google Scholar 

  29. Dou Q, Meng M-R, Li L (2010) Effect of pimelic acid treatment on the crystallization, morphology, and mechanical properties of isotactic polypropylene/mica composites. Polym Compos 31(9):1572–1584

    Article  CAS  Google Scholar 

  30. Meng M-R, Dou Q (2008) Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater Sci Eng A 492(1–2):177–184

    Article  Google Scholar 

  31. Dou Q (2008) Effect of the composition ratio of pimelic acid/calcium stearate bicomponent nucleator and crystallization temperature on the production of β crystal form in isotactic polypropylene. J Appl Polym Sci 107(2):958–965

    Article  CAS  Google Scholar 

  32. Trongtorsak K, Supaphol P, Tantayanon S (2004) Effect of calcium stearate and pimelic acid addition on mechanical properties of heterophasic isotactic polypropylene/ethylene–propylene rubber blend. Polym Test 23(5):533–539

    Article  CAS  Google Scholar 

  33. Li JX, C WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. Journal of Vinyl & Additive Technology 3(2):151–156

    Article  CAS  Google Scholar 

  34. van der Meer DW (2015). J V, G J Vancso, The influence of chain defects on the crystallisation behaviour of isotactic polypropylene eXPRESS Polymer Letters 9(3):233–254

  35. Kang J, He J, Chen Z, Yang F, Chen J, Cao Y, Xiang M (2015) Effects of β-nucleating agent and crystallization conditions on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotubes composites. Polym Adv Technol 26(1):32–40

    Article  CAS  Google Scholar 

  36. Kang J, Chen Z, Chen J, Yang F, Weng G, Cao Y, Xiang M (2015) Crystallization and melting behaviors of the ß-nucleated isotactic polypropylene with different melt structures – the role of molecular weight. Thermochim Acta 599:42–51

  37. Kang J, Yang F, Chen J, Cao Y, Xiang M (2017) Influences of molecular weight on the non-isothermal crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. Polym Bull 74(5):1461–1482

    Article  CAS  Google Scholar 

  38. Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J, Cao Y, Xiang M, Li H (2015) Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci 132(4):41355

    Article  Google Scholar 

  39. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Influence of lamellar structure on double yield behavior and pore size distribution in β nucleated polypropylene stretched membranes. RSC Adv 4(81):43012–43023

    Article  CAS  Google Scholar 

  40. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4(69):36689–36701

    Article  CAS  Google Scholar 

  41. Jian Kang ZC, Yang F, Chen J, Ya C, Weng G, Xiang M (2015) Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures. Colloid Polym Sci

  42. Jian Kang JH (2015) Zhengfang Chen, Huiyang Yu, Jinyao Chen, Feng Yang, Ya Cao, Ming Xiang, investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene / multi-walled carbon nanotubes composites nucleated with β-nucleating agent - the role of melt structures. J Therm Anal Calorim 119(3):1769–1780

    Article  Google Scholar 

  43. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 40(8):2745–2750

    Article  CAS  Google Scholar 

  44. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y, Li H, Kang J, Xiang M (2014) Investigation on the morphology and tensile behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution. J Appl Polym Sci 131(6):40027

    Article  Google Scholar 

  45. Kang J, Peng H, Wang B, Chen J, Yang F, Cao Y, Li H, Xiang M Investigation on the self-nucleation behavior of controlled-rheology polypropylene. Journal of Macromolecular Science, Part B 2014, 54(2):127–142

  46. Jian Kang GW (2015) Jinyao Chen, Feng Yang, Ya Cao, Ming Xiang. Influences of pre-ordered melt structures on the crystallization behavior and polymorphic composition of β-nucleated isotactic polypropylene with different stereo-defect distribution Journal of Applied Polymer Science 132:42632

  47. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y, Li H, Kang J, Xiang M (2014) Morphology and mechanical behavior of isotactic polypropylene with different stereo-defect distribution in injection molding. Polym Adv Technol 25(12):1464–1470

    Article  Google Scholar 

  48. Chen Z, Kang W, Kang J, Chen J, Yang F, Cao Y, Xiang M (2015) Non-isothermal crystallization behavior and melting behavior of Ziegler–Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent. Polym Bull 72(12):3283–3303

    Article  CAS  Google Scholar 

  49. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21(4):1–12

    Article  Google Scholar 

  50. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res 20(70):1–11

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (51702282), and the Key industry technology innovation projects of Chongqing (CSTC2017zdcy-zdyf0297) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Zhaoyi or Li Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, Y., Zhaoyi, H., Lu, L. et al. Effects of β-nucleating agent and graphene oxide on the crystallization and polymorphic composition of isotactic polypropylene / graphene oxide composites for bridge pavement. J Polym Res 26, 9 (2019). https://doi.org/10.1007/s10965-018-1622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1622-3

Keywords

Navigation