Skip to main content
Log in

Pectin-graft-poly(2-acrylamido-2-methyl-1-propane sulfonic acid) silver nanocomposite hydrogel beads: evaluation as matrix material for sustained release formulations of ketoprofen and antibacterial assay

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Pectin-graft-poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (Pec-g-PAMPS) gel was made in the form of beads by subjecting the solution containing pectin (Pec), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and ammonium peroxodisulphate to microwave irradiation followed by ionic crosslinking in CaCl2 solution. Gel beads containing silver nanoparticles were also prepared by the same method but with the addition of silver nitrate and trisodium citrate solution prior to microwave irradiation. The synthesized Pec-g-PAMPS and its silver nanocomposite (Pec-g-PAMPS-Ag) gel beads were characterized using FTIR, TGA, XRD, SEM, EDS and TEM techniques. The effect of incorporation of Ag NPs on the biological activity of Pec-g-PAMPS was studied by zone inhibition method considering two bacterial strains namely E. coli and B. subtilis. The nanocomposite gel exhibited higher antibacterial activity compared to the parent gel, which was comparable with the standard drug, Streptomycin. The in vitro drug release profiles of the parent gel and its composite were analyzed using Ketoprofen (KF) to study the effect of incorporation of Ag NPs on the drug release behavior of the Pec-g-PAMPS. The presence of silver nanoparticles enhanced both swelling of the gel beads and the extent of drug release significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamidi M, Azadi A, Rafiei P (2008) Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  PubMed  Google Scholar 

  2. Khutoryanskiy VV (2007) Int J Pharm 33:415–426

    Google Scholar 

  3. Elvira C, Mano JF, San Román J, Reis RL (2002) Biomaterials 23:1955–1966

    Article  CAS  PubMed  Google Scholar 

  4. Siepmann J, Siegel RA, Rathbone MJ (eds) (2012) Fundamentals and applications of controlled release drug delivery, hydrogels (chapter 1). Springer, New York, pp 75–106

    Google Scholar 

  5. Coviello T, Matricardi P, Marianecci C, Alhaique FJ (2007) J Control Release 119:5–24

    Article  CAS  PubMed  Google Scholar 

  6. Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  7. Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Prog Polym Sci 37:237–280

    Article  CAS  Google Scholar 

  8. Suhag D, Bhatia R, Das S, Shakeel A, Ghosh A, Singh A, Sinha OP, Chakrabarti S, Mukherjee M (2015) RSC Adv 53:5963–53972

    Google Scholar 

  9. Kalia S, Sabaa MW (2013) Polysaccharide based graft copolymers. In: Kalia S, Sabaa MW, Kango S (eds) Polymer grafting: a versatile means to modify the polysaccharides (chapter-1). Springer-Verlag, Berlin, pp 1–14

    Google Scholar 

  10. de Souza JRR, de Carvalho JIX, Trevisan MTS, de Paula RCM, Ricardo NMPS, Feitosa JPA (2009) Food Hydrocoll 23:2278–2286

    Article  CAS  Google Scholar 

  11. Sriamornsak P (1998) Int J Pharm 169:213–220

    Article  CAS  Google Scholar 

  12. Itoh K, Hirayama T, Takahashi A, Kubo W, Miyazaki S, Dairaku M, Togashi M, Mikami R, Attwood D (2007) Int J Pharm 33:590–596

    Google Scholar 

  13. Munjeri O, Collett JH, Fell JTJ (1997) J Control Release 46:273–278

    Article  CAS  Google Scholar 

  14. Sutar PB, Mishra RK, Pal K, Banthia AKJ (2008) J Mater Sci Mater Med 19:2247–2253

    Article  CAS  PubMed  Google Scholar 

  15. Junga J, Arnoldb RD, Wicker L (2013) Colloids Surf B: Biointerfaces 104:116–121

    Article  CAS  Google Scholar 

  16. Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR (2017) Int J Biol Macromol 97:536–543

    Article  CAS  PubMed  Google Scholar 

  17. Suna X, Shi J, Xua X, Cao S (2013) Int J Biol Macromol 59:273–281

    Article  Google Scholar 

  18. Hua S, Ma H, Li X, Yang H, Wang A (2010) Int J Biol Macromol 46:517–523

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Wang Q, Wang A (2010) Acta Biomater 6:445–454

    Article  CAS  PubMed  Google Scholar 

  20. Pongjanyakul T, Puttipipatkhachorn S (2007) Int J Pharm 331:61–71

    Article  CAS  PubMed  Google Scholar 

  21. Zauro SA, Vishalakshi B (2018) Sep Sci Technol:1–17

  22. Kodoth AK, Ghate VM, Lewis SA, Badalamoole V (2018) Int J Biol Macromol 115:418–430

    Article  CAS  PubMed  Google Scholar 

  23. Duran N, Duran M, de Jesus BM, Seabra AB, Favaro WJ, Nakazato G (2016) Nanomedicine: NBM 12:789–799

    Article  CAS  Google Scholar 

  24. Guzman M, Dille J, Godet S (2012) Nanomedicine: NBM 8:37–45

    Article  CAS  Google Scholar 

  25. Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM (2009) Carbohydr Polym 75:463–471

    Article  CAS  Google Scholar 

  26. Gulsonbi M, Parthasarathy S, Raj KB, Jaisankar V (2016) Ecotoxicol Environ Saf 134:421–426

    Article  CAS  PubMed  Google Scholar 

  27. Bardajee GR, Hooshyar Z, Kabiri F (2012) Bull Kor Chem Soc 33:2635–2641

    Article  CAS  Google Scholar 

  28. Hooshyar Z, Bardajee GR (2017) J Iran Chem Soc 14:541–549

    Article  CAS  Google Scholar 

  29. Gangadhar B, Vishalakshi B (2018) Polym Int. https://doi.org/10.1002/pi.5587

    Article  CAS  Google Scholar 

  30. Siepmann J, Peppas NA (2011) Int J Pharm 418:6–12

    Article  CAS  PubMed  Google Scholar 

  31. Higuchi T (1963) J Pharm Sci 84:64–77

    Google Scholar 

  32. Hixsonl AW, Crowel JH (1931) Ind Eng Chem 23:923–931

    Article  Google Scholar 

  33. Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Int J Pharm 15:25–35

    Article  CAS  Google Scholar 

  34. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M (2009) Polym Int 58:1252–1259 [27]

    Article  CAS  Google Scholar 

  35. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) J Colloid Interface Sci 342:73–82

    Article  CAS  Google Scholar 

  36. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Mohana Raju K (2013) Carbohydr Polym 95:188–194

    Article  CAS  PubMed  Google Scholar 

  37. Babu VR, Kim C, Kim S, Ahn C, Lee Y (2010) Carbohydr Polym 81:196–202

    Article  CAS  Google Scholar 

  38. Akkaya MÇ, Emik S, Güçlü G, İyim TB, Özgümüş S (2009) J Appl Polym Sci 114:1150–1159

    Article  CAS  Google Scholar 

  39. Sharma VK, Yngard RA, Lin Y (2009) Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  40. Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  41. Li WR, Xie XB, Shi QS, Zeng HY, Yang YSO, Chen YB (2010) Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  PubMed  Google Scholar 

  42. Hörter D, Dressman JB (2001) Adv Drug Deliv Rev 46:75–87

    Article  PubMed  Google Scholar 

  43. Wang Q, Xi X, Zhang X, Zhang J, Wang A (2010) Int J Biol Macromol 46:356–362

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Naveen K, Research Scholar, Department of Biosciences, Mangalore University, Karnataka, India for carrying out the antibacterial studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishalakshi Badalamoole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaladimath, G., Badalamoole, V. Pectin-graft-poly(2-acrylamido-2-methyl-1-propane sulfonic acid) silver nanocomposite hydrogel beads: evaluation as matrix material for sustained release formulations of ketoprofen and antibacterial assay. J Polym Res 25, 202 (2018). https://doi.org/10.1007/s10965-018-1592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1592-5

Keywords

Navigation