Skip to main content
Log in

Effect of interface on bulk polymer: control of glass transition temperature of rubber

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In current paper, we demonstrated that molecular dynamics and glass transition of rubber can be controlled by constructing attractive interface between rubber matrix and fillers. Based on a combination of experiments and molecular simulations, it was revealed that interfacial segmental mobility was reduced and glass transition temperatures (Tgs) of epoxidized natural rubber (ENR) were significantly improved due to in situ polymerization of zinc dimethacrylate (ZDMA). During curing, ZDMA polymerizes in rubber matrix, resulting in the appearance of nanodispersion phases of poly-ZDMA (PZDMA). It was demonstrated that coordination interaction exists between epoxy groups and PZDMA in interfacial regions. Furthermore, using dynamic Monte Carlo simulations, it was observed that the interfacial regions that have highest content of epoxy groups exhibit lowest segmental mobility. Then, the increase of ZDMA content leads to the rise of the fraction of absorbed interfacial segments, and thus the Tgs of filled rubbers are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rauline R (1992) Rubber compound and tires based on such a compound. Eur Patent 0501227:A1

    Google Scholar 

  2. Rauline R (1993) Copolymer rubber composition with Silica filler, tire having base of said composition and method of preparing same, US Patent US005227425A

  3. Hilonga A, Kim JK, Sarawade PB, Quang DV, Shao GN, Elineema G, Kim HT (2012) Synthesis of mesoporous silica with superior properties suitable for green tire. J Ind Eng Chem 18:1841–1844

    Article  CAS  Google Scholar 

  4. Liu J, Zheng Z, Li F, Lei W, Gao Y, Wu Y, Zhang L, Wang Z (2016) Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile. Nano Energy 28:87–96

    Article  CAS  Google Scholar 

  5. Sperling LH, Fay JJ (1991) Factors which affect the glass transition and damping capability of polymers. Polym Adv Technol 2:49–56

    Article  CAS  Google Scholar 

  6. Qu L, Yu G, Wang L, Li C, Zhao Q, Li J (2012) Effect of filler-elastomer interactions on the mechanical and nonlinear viscoelastic behaviors of chemically modified silica-reinforced solution-polymerized styrene butadiene rubber. J Appl Polym Sci 126:116–126

    Article  CAS  Google Scholar 

  7. Zhou X, Wang R, Lei W, Qiao H, Ji H, Zhang L, Hua K, Kulig J (2015) Design and synthesis by redox polymerization of a bio-based carboxylic elastomer for green tire. Sci Chin Chem 58:1561–1569

    Article  CAS  Google Scholar 

  8. Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134–137

    Article  CAS  PubMed  Google Scholar 

  9. Gao Y, Liu J, Zhang L, Cao D (2014) Existence of a glassy layer in the polymer-nanosheet interface: evidence from molecular dynamics. Macromol Theory Simul 23:36–48

    Article  CAS  Google Scholar 

  10. Starr FW, Schroder TB, Glotzer SC (2002) Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35:4481–4492

    Article  CAS  Google Scholar 

  11. Kaufman S, Slichter WP, Davis DD (1971) Nuclear magnetic resonance study of rubber-carbon black interactions. J Polym Sci Polym Phys 9:829–839

    Article  CAS  Google Scholar 

  12. Metin B, Blum FD (2006) Segmental dynamics in poly(methyl acrylate) on silica: molecular-mass effects. J Chem Phys 125:054707

    Article  CAS  PubMed  Google Scholar 

  13. Tsagaropoulos G, Eisenberg A (1995) Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 28:6067–6077

    Article  CAS  Google Scholar 

  14. Litvinov VM, Orza RA, Klüppel M, Duin MV, Magusin PCMM (2011) Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM. Macromolecules 44:4887–4900

    Article  CAS  Google Scholar 

  15. Vo LT, Anastasiadis SH, Giannelis EP (2011) Dielectric study of poly(styrene-co-butadiene) composites with carbon black, silica, and nanoclay. Macromolecules 44:6162–6171

    Article  CAS  Google Scholar 

  16. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35:9756–9762

    Article  CAS  Google Scholar 

  17. Hao T, Zhou Z, Wang Y, Liu Y, Zhang D, Nie Y, Wei Y, Li S (2017) Segmental dynamics in interfacial region of composite materials. Monatsh Chem 148:1285–1293

    Article  CAS  Google Scholar 

  18. Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  PubMed  Google Scholar 

  19. Oh H, Green PF (2009) Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat Mater 8:139–143

    Article  CAS  PubMed  Google Scholar 

  20. Lin T, Ma S, Lu Y, Guo B (2014) New design of shape memory polymers based on natural rubber crosslinked via Oxa-Michael reaction. ACS Appl Mater Interfaces 6:5695–5703

    Article  CAS  PubMed  Google Scholar 

  21. Lin T, Guo B (2013) Curing of rubber via Oxa-Michael reaction toward significantly increased aging resistance. Ind Eng Chem Res 52:18123–18130

    Article  CAS  Google Scholar 

  22. Tocuchet P, Rodriguez G, Gatza PE, Butler DP, Crawford D, Teets AR, Fener HO, Flanagan DP (1989) Rubber compound for tracked vehicle track pads. US Patent 4:843,114

    Google Scholar 

  23. Medalia AI, Alesi AL, Mead JL (1992) Pattern abrasion and other mechanisms of wear of tank track pads. Rubber Chem Technol 65:154–175

    Article  CAS  Google Scholar 

  24. Lu YL, Liu L, Yang C, Tian M, Zhang LQ (2005) The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM. Eur Polym J 41:577–588

    Article  CAS  Google Scholar 

  25. Lu YL, Liu L, Tian M, Geng HP, Zhang LQ (2005) Study on mechanical properties of elastomers reinforced by zinc dimethacrylate. Eur Polym J 41:589–598

    Article  CAS  Google Scholar 

  26. Peng Z, Liang X, Zhang Y, Zhang Y (2002) Reinforcement of EPDM by in situ prepared zinc dimethacrylate. J Appl Polym Sci 84:1339–1345

    Article  CAS  Google Scholar 

  27. Ikeda T, Yamada B, Tsuji M, Sakurai S (1999) In situ copolymerization behaviour of zinc dimethacrylate and 2-(N-ethylperfluoro-octanesulphonamido)ethyl acrylate in hydrogenated nitrile–butadiene rubber during peroxide crosslinking. Polym Int 48:446–454

    Article  CAS  Google Scholar 

  28. Lu Y, Liu L, Shen D, Yang C, Zhang LQ (2004) Infrared study on in situ polymerization of zinc dimethacrylate in poly(α-octylene-co-ethylene) elastomer. Polym Int 53:802–808

    Article  CAS  Google Scholar 

  29. Yuan X, Zhang Y, Peng Z, Zhang Y (2002) In situ preparation of magnesium methacrylate to reinforce NBR. J Appl Polym Sci 84:1403–1408

    Article  CAS  Google Scholar 

  30. Nie Y, Huang G, Qu L, Zhang P, Weng G, Wu J (2010) Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate. J Appl Polym Sci 115:99–106

    Article  CAS  Google Scholar 

  31. Nomura A, Takano J, Toyoda A, Saito T (1993) Structural analysis of high strength HNBR/ZDMA composites. J Jpn Rubber Soc 66:830–838

    Article  CAS  Google Scholar 

  32. Dontsov A, De Candia F, Amelino L (1972) Elastic properties and structure of polybutadiene vulcanized with magnesium methacrylate. J Appl Polym Sci 16:505–518

    Article  CAS  Google Scholar 

  33. Chen Y, Xu C, Cao L, Wang Y, Fang L (2013) Morphology study of peroxide-induced dynamically vulcanized polypropylene/ethylene-propylene-diene monomer/zinc dimethacrylate blends during tensile deformation. J Phys Chem B 117:7819–7825

    Article  CAS  PubMed  Google Scholar 

  34. Nie Y, Huang G, Liu Z, Qu L, Zhang P, Weng G, Wu J (2010) Improved mechanical properties and special reinforcement mechanism of natural rubber reinforced by in situ polymerization of zinc dimethacrylate. J Appl Polym Sci 116:920–928

    CAS  Google Scholar 

  35. Nie Y (2015) Strain-induced crystallization of natural rubber/zinc dimethacrylate composites studied using synchrotron X-ray diffraction and molecular simulation. J Polym Res 22:1–10

    Article  CAS  Google Scholar 

  36. Hu WB, Mathot VBF, Frenkel D (2003) Phase transitions of bulk statistical copolymers studied by dynamic Monte Carlo simulations. Macromolecules 36:2165–2175

    Article  CAS  Google Scholar 

  37. Nie Y, Gao H, Wu Y, Hu W (2014) Thermodynamics of strain-induced crystallization of random copolymers. Soft Matter 10:343–347

    Article  CAS  PubMed  Google Scholar 

  38. Arroyo M, López-Manchado MA, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44:2447–2453

    Article  CAS  Google Scholar 

  39. Chen Y, Xu C (2011) Crosslink network evolution of nature rubber/zinc dimethacrylate composite during peroxide vulcanization. Polym Compos 32:1505–1514

    Article  CAS  Google Scholar 

  40. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  41. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  42. Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107

    Article  CAS  Google Scholar 

  43. Malmierca MA, González-Jiménez A, Mora-Barrantes I et al (2014) Characterization of network structure and chain dynamics of elastomeric ionomers by means of 1h low-field NMR. Macromolecules 47:5655–5667

    Article  CAS  Google Scholar 

  44. Hall LM, Seitz ME, Winey KI, Opper KL, Wagener KB, Stevens MJ, Frischknecht AL (2012) Ionic aggregate structure in ionomer melts: effect of molecular architecture on aggregates and the ionomer peak. J Am Chem Soc 134:574–587

    Article  CAS  PubMed  Google Scholar 

  45. Xu C, Cao L, Huang X, Chen Y, Lin B, Fu L (2017) Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl Mater Interfaces 9:29363–29373

    Article  CAS  PubMed  Google Scholar 

  46. Chueangchayaphan W, Tanrattanakul V, Chueangchayaphan N, Muangsap S, Borapak W (2017) Synthesis and thermal properties of natural rubber grafted with poly (2-hydroxyethyl acrylate). J Polym Res 24:107–114

    Article  CAS  Google Scholar 

  47. Thongnuanchan B, Ninjan R, Kaesaman A, Nakason C (2015) Studies on the ambient temperature crosslinking of latex films based on natural rubber grafted with poly (diacetone acrylamide) using DMTA. J Polym Res 22:115–125

    Article  CAS  Google Scholar 

  48. Zhang X, Tang Z, Guo B, Zhang L (2016) Enabling design of advanced elastomer with bioinspired metal-oxygen coordination. ACS Appl Mater Interfaces 8:32520–32527

    Article  CAS  PubMed  Google Scholar 

  49. Luo Z, Cheng W, Chen H, Fu X, Peng X, Luo F, Nie L (2013) Preparation and properties of enzyme-modified cassava starch–zinc complexes. J Agric Food Chem 61:4631–4638

    Article  CAS  PubMed  Google Scholar 

  50. Nie Y, Ye X, Zhou Z, Yang W, Tao L (2014) Intrinsic correlations between dynamic heterogeneity and conformational transition in polymers during glass transition. J Chem Phys 141:074901

    Article  CAS  PubMed  Google Scholar 

  51. Nie Y, Ye X, Zhou Z, Hao T, Yang W, Lu H (2015) Structural characteristics of a cooperatively rearranging region during the glass transition of a polymer system. RSC Adv 5:17726–17731

    Article  CAS  Google Scholar 

  52. Lu H, Zhou Z, Hao T, Ye X, Nie Y (2015) Temperature dependence of structural properties and chain configurational study: a molecular dynamics simulation of polyethylene chains. Macromol Theory Simul 24:335–343

    Article  CAS  Google Scholar 

  53. Ye X, Zhou Z, Nie Y, Ma P, Hao T, Yang W, Lu H (2016) Comparative study on dynamical heterogeneity of ring and linear polymers. Macromol Theory Simul 25:9–15

    Article  CAS  Google Scholar 

  54. Nie Y, Ye X, Qiu X et al (2018) Molecular simulations of fragility of linear and ring polymers. Comput Mater Sci 142:200–205

    Article  CAS  Google Scholar 

  55. Nie Y, Zhou Z, Hao T, Ye X, Yang W (2016) The distribution of glass transition temperatures in ultrathin polymer films controlled by segment density or interfacial interaction. Macromol Theory Simul 25:187–195

    Article  CAS  Google Scholar 

  56. Xie Z, Fu X, Wei L et al (2017) New evidence disclosed for the engineered strong interfacial interaction of graphene/rubber nanocomposites. Polymer 118:30–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China (No. 21404050) are gratefully acknowledged. The Research Foundation of Jiangsu University (No. 14JDG059), the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402019A), and the Postdoctoral Science Foundation of China (No. 2015 M580394) are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiping Zhou or Yijing Nie.

Electronic supplementary material

ESM 1

(DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Wu, H., Weng, G. et al. Effect of interface on bulk polymer: control of glass transition temperature of rubber. J Polym Res 25, 173 (2018). https://doi.org/10.1007/s10965-018-1566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1566-7

Keywords

Navigation