Abstract
A set of poly[bis(trimethylsilyl)tricyclononenes] bearing two trimethylsilyl side groups at geminal position in monomer unit has been synthesized by ring-opening metathesis polymerization technique and investigated via static and dynamic light scattering, viscometry and 1Н NMR relaxation in diluted solutions. Molecular properties of this type polymer have been under study for the first time. Its scaling relations and chain rigidity are obtained and compared to polymer synthesized by means of addition polymerization of the same monomer. There is shown that additive and metathesis polymers considerably differ by their chain rigidity, both equilibrium and kinetic. Metathesis analogue is typical flexible chain polymer characterizing by Kuhn segment length 1.6 nm, while the additive one, whose Kuhn segment is 5.6 nm, belongs to semirigid range. The influence of chain rigidity on thin film properties of substituted polytricyclononenes is also discussed because the synthesized by addition or metathesis routes polymers display very different gas permeability in films.
This is a preview of subscription content, access via your institution.









References
Blank F, Janiak C (2009). Coord Chem Rev 253:27–861
Grubbs RJ (2008) Catalyst development. Handbook of Metathesis: Catalyst Development, vol 1. Wiley-VCH, Berlin
Ivin KJ, Mol JC (1997) Ring-opening metathesis polymerization: general aspects. Olefin metathesis and metathesis polymerization2nd edn. Academic Press, USA, pp 224–259
Bermeshev MV, Syromolotov AV, Starannikova LE, Gringolts ML, Lakhtin VG, Yampolskii YP, Finkelshtein ES (2013) Glassy polynorbornenes with Si–O–Si containing side groups. novel materials for hydrocarbon membrane separation. Macromolecules 46:8973–8979
Smith CD (1966) Cycloaddition reactions of “quadricyclanes”1. J Am Chem Soc 88:4273–4277
Tabushi I, Yamamura K, Yoshida Z (1972) Regio- and stereospecific [2.pi. + 2.sigma. + 2.sigma.] cycloaddition reaction of quadricyclane. J Am Chem Soc 94:787–790
Bulgakov BA, Bermeshev MV, Demchuk DV, Lakhtin VG, Kazmin AG, Finkelshtein ES (2012) Synthesis of tricyclononenes and tricyclononadienes containing MX3-groups (M=C, Si, Ge; X=Cl, Me). Tetrahedron 68:2166–1271
Hirao K, Yokozawa T, Yamashita A, Watanabe T (1993). HeteroCycles 34:1503–1506
Chapala PP, Bermeshev MV, Starannikova LE, Belov NA, Ryzhikh VE, Shantarovich VP, Lakhtin VG, Gavrilova NN, Yampolskii YP, Finkelshtein ES (2015) A novel, highly gas-permeable polymer representing a new class of silicon-containing polynorbornens as efficient membrane materials. Macromolecules 48:8055–8061
Bermeshev M, Bulgakov B, Demchuk BD, Filatova M, Starannikova L, Finkelshtein E (2013) Metathesis and addition polymerization of novel Me3Si- and Me3Ge-substituted tricyclononenes. Polym J 45:718–726
Sundell BJ, Lawrence III JA, Harrigan DJ, Vaughn JT, Pilyugina TS, Smith DR (2016) Alkoxysilyl functionalized polynorbornenes with enhanced selectivity for heavy hydrocarbon separations. RCS Adv 6:51619–51628
Chapala P, Bermeshev M, Starannikova L, Shantarovich V, Gavrilova N, Lakhtin V, Yampolskii Y, Finkelshtein E (2016) Synthesis and gas-transport properties of metathesis polytricyclononenes bearing three Me3Si groups per monomer unit. Macromol Chem Phys 217:1966–1976
Yevlampieva NP, Bermeshev MV, Gubarev AS, Chapala PP, Antipov MY (2016) Additive poly[3-(trimethylsilyl)tricyclononene-7]: мolecular properties and chain rigidity. Polym Sci Ser A 58:324–335
Yevlampieva NP, Bermeshev MV, Komolkin AV, Vezo OS, Chapala PP, Il'jasova YV (2017) The equilibrium and kinetic rigidity of additive poly(trimethylsilyltricyclononenes) with one and two Si(CH3)3 groups in monomer unit. Polym Sci Ser А 59:473–482
Yevlampieva NP, Bermeshev MV, Vezo OS, Chapala PP, Il'jasova YV (2018) Molecular properties of additive Poly(bis(trimethylsilyl)tricyclonones) with vicinal and geminal side substituents. J Polym Res 60:162–171
Yevlampieva NP, Gubarev AS, Gorshkova MY, Okrugin BM, Ryumtsev EI (2015) Hydrodynamic behavior of quaternized chitosan at acidic and neutral pH. Polym Res 22:166
Gringol’ts ML, Bermeshev MV, Syromolotov AV, Starannikova LE, Filatova MF, Makovetskii K (2010) Highly permeable polymer materials based on silicon-substituted norbornenes. Pet Chem 50:352–361
Kulicke WM, Clasen C (2004) Viscometry of polymers and polyelectrolytes. Springer, Berlin–Heidelberg
Tsvetkov NV (1989) Rigid-Chain Polymers. Plenum Press, New York
Chu B (2007) Laser Light Scattering: basic principles and practice. Dover Publications Inc, USA
Berne BJ, Pecora R (2000) Dynamic light scattering: courier. Dover Publications, New York
Howarth OW (1993) In: Ibbett RN (ed) NMR spectroscopy of polymers. Springer, New-York, pp 125–160
Rice DM (1993) In: Ibbett RN (ed) NMR spectroscopy of polymers. Springer, New-York, pp 275–304
Kimmich R, Anoardo E (2004) Field-cycling NMR relaxometry. Prog Nucl Magn Reson Spectrosc 44:257–320
Stroble GR (2007) Physics of polymers. Springer-Verlag, Berlin
Gray HB, Bloomfield VA, Hearst JE (1967) Sedimentation coefficients of linear and cyclic wormlike coils with excluded‐volume effects. J Chem Phys 46:1493–1498
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(DOC 948 kb)
Rights and permissions
About this article
Cite this article
Yevlampieva, N., Bermeshev, M., Vezo, O. et al. Metathesis and additive poly(tricyclononenes) with geminal trimethylsilyl side groups: chain rigidity, molecular and thin film properties. J Polym Res 25, 162 (2018). https://doi.org/10.1007/s10965-018-1558-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10965-018-1558-7
Keywords
- Poly(tricyclononenes)
- Metathesis ring-opening polymerizations
- Solution properties
- Structure-property relations