Skip to main content
Log in

Photocurable shape-memory polyether-polythioether/graphene nanocomposites and the study of their thermal conductivity

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein a method is described to prepare photocurable thermally-conductive shape memory epoxy/ graphene composites. By photopolymerizing the epoxy resin diglycidyl ether of bisphenol A with an allyl-functionalized ditertiary amine as the curing agent, jointly with a multifunctional thiol, a crosslinked polyether-polythioether co-network was obtained. The presence of a soft domain like the flexible polythioethers enable the co-network to display shape memory properties. By varying the polyether to polythioether ratio it was possible to modulate the shape memory characteristics of the composite. The effect of the concentration of graphene nanoplatelets (GNP) in the composite was also investigated. Shape memory performances revealed excellent values of shape recovery and shape fixity with maximums of 98 and 99% respectively. The temporary- shaped composites with higher concentration of polythioethers and GNP regained their permanent shapes in 2–3 s when heated above the programming temperature. The thermal conductivity in the composites reached 0.39 W/m°K for the composite with 15% w/w of GNP. The presence of the polythioethers in the co-network enhanced the toughness of the composite as revealed by the impact resistance analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu WM, Rong MZ, Zhang MQ (2016) Sunlight driven self-healing, reshaping and recycling of a robust, transparent and yellowing-resistant polymer. J Mat Chem A: Materials for Energy and Sustainability 4(27):10683–10690

    Article  CAS  Google Scholar 

  2. Ahmed MM, Ansari MJ, Alkharfy Khalid M, Fatima F, Al-Shdefat R, Anwer MK, Jamil S, Bem Ali, Haitham NJ, Faid M (2014) Smart drug delivery systems: thermo – pH responsive ciprofloxacin ophthalmic gels. Der Pharmacia Lettre 6(6):51–55

  3. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26:412–416

    Article  CAS  Google Scholar 

  4. Sahoo NG, Jung YC, Cho JW (2007) Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manuf Process 22:419–423

    Article  CAS  Google Scholar 

  5. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  CAS  Google Scholar 

  6. Lendlein A, Jiang HY, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature (London) 434:879–882

    Article  CAS  Google Scholar 

  7. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  PubMed  Google Scholar 

  8. Alexander C (2006) Temperature- and pH responsive smart polymers for gene delivery. Expert Opin Drug Deliv 3(5):573–578

    Article  CAS  PubMed  Google Scholar 

  9. Kuhl N, Bode S, Hager MD, Schubert US (2016) Self-healing polymers based on reversible covalent bonds. Adv Polym Sci 273(Self-Healing Materials):1–58

    CAS  Google Scholar 

  10. Postiglione G, Alberini M, Leigh S, Levi M, Turri S (2017) Effect of 3D-printed microvascular network design on the self-healing behavior of cross-linked polymers. ACS Appl Mater Interfaces 9(16):14371–14378

    Article  CAS  PubMed  Google Scholar 

  11. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  CAS  Google Scholar 

  12. Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H (2010) Shape memory materials. Mater Today 13(7–8):54–61

    Article  CAS  Google Scholar 

  13. Lendlein A, Kelch S (2014) Shape-memory polymers, Ed Mark, H.F.; Encycl Polym Sci Technol. (4th Ed) 12, 409–419

  14. Lewis CL, Dell EM (2016) A review of shape memory polymers bearing reversible binding groups. J Polym Sci B Polym Phys 54(14):1340–1364

    Article  CAS  Google Scholar 

  15. Kang H, Li M, Tang Z, Xue J, Hu X, Zhang L, Guo B (2014) Synthesis and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications. J Mat Chem B: Mat Biol Med 2(45):7877–7886

    Article  CAS  Google Scholar 

  16. Meng QH, Hu JL, Yeung LY (2007) An electro-active shape memory fibre by incorporating multi-walled carbon nanotubes. Smart Mater Struct 16:830–836

    Article  Google Scholar 

  17. Tandon G, Baur J, McClung A (2015) Shape memory polymers for aerospace applications: novel synthesis, modelling, characterization and design. DEStech Publications, Incorporated, Lancaster, PA, USA

    Google Scholar 

  18. Li W, Liu Y, Leng J (2017) Programmable and shape memorizing information carriers. ACS Appl Mater Interfaces 9:44792–44798

    Article  CAS  PubMed  Google Scholar 

  19. Kuang X, Chen K, Dunn CK, Wu J, Li VCF, Qi HJ (2018) 3D Printing of Highly Stretchable, Shape-memory, and Self-Healing Elastomer toward Novel 4D Printing. ACS Appl Mater Interfaces 10(8):7381–7388

    Article  CAS  PubMed  Google Scholar 

  20. Karger-Kocsis J, Keki S (2018) Review of progress in shape memory epoxies and therir composites. Polymers 10(1):34

    Article  CAS  Google Scholar 

  21. Santhosh Kumar KS, Biju R, Reghunadhan Nair CP (2013) Progress in shape memory epoxy resins. React Funct Polym 13(2):421–430

    Article  CAS  Google Scholar 

  22. Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag 27:8–16

    Article  Google Scholar 

  23. Ji H, Sellan DP, Pettes MT, Kong X, Ji J, Shi L, Ruoff RS (2014) Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci 7:1185–1192

    Article  CAS  Google Scholar 

  24. Lee SW, Kwak G, Han YS, Vo TS, Kwon W (2017) Preparation and characterization of thermally conductive polymer composites containing silanized nanodiamonds. J Mol Cryst Liq Cryst 651(1):180–188

    Article  CAS  Google Scholar 

  25. Yang J, Caillat T (2006) Thermoelectric materials for space and automotive power generation. MRS Bull 31(3):224–229

    Article  CAS  Google Scholar 

  26. Yang Y (2007) Thermal conductivity. ed Mark J.E.;. Physical properties of polymers handbook. New York: Springer-Verlag, 155–163

  27. Hu J, Huang Y, Yao Y, Pan G, Sun J, Zeng X, Sun R, Xu JB, Song B, Wong CP (2017) A polymer composite with improved thermal conductivity by constructing hierarchically ordered three-dimensional interconnected network of boron nitride. ACS Appl Mater Interfaces 9:13544–13553

    Article  CAS  PubMed  Google Scholar 

  28. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2010) Enhanced thermal conductivity in a hybrid graphite Nanoplatelet—carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744

    Article  CAS  Google Scholar 

  29. Choi S, Kim J (2013) Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos B Eng 51:140–147

    Article  CAS  Google Scholar 

  30. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater 27:2100–2106

    Article  CAS  Google Scholar 

  31. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  PubMed  Google Scholar 

  32. Xu P, Loomis J, Bradshaw RD, Panchapakesan B (2012) Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites. Nanotechnology 23:3847–3856

    Google Scholar 

  33. Shahil KMF, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12(2):861–867

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira da Silva LC, Guentger Soarez B (2017) Effects of graphene functionalization on the long-term behavior of epoxy/graphene composites evaluated by dynamic mechanical analysis. J Appl Polym Sci. https://doi.org/10.1002/app.44816

  35. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737

    Article  CAS  PubMed  Google Scholar 

  36. Acosta Ortiz R, Garcia Valdez AE, Navarro Tovar AG, Hilario de la Cruz AA, Gonzalez Sanchez LF, Trejo Garcia JH, Espinoza Muñoz JF, Sangermano M (2014) Development of an hybrid epoxy-amine/thiol-ene photocurable system. J Polym Res 21:504

    Article  CAS  Google Scholar 

  37. Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000

    Article  CAS  Google Scholar 

  38. Acosta Ortiz R, Garcıa Valdez AE, Sangermano M, Hilario de la Cruz AA, Aguirre Flores R, Espinoza Munoz JF (2015) Comparison of the performance of two bifunctional curing agents for the Photopolymerization of epoxy resins and the study of the mechanical properties of the obtained polymers. Macromol Symp 358:35–40

    Article  CAS  Google Scholar 

  39. Acosta Ortiz R, Garcıa Valdez AE (2016) Synthesis, reactivity and mechanical properties of Photocurable epoxy-thiol-ene systems, in epoxy resins: synthesis, applications and recent developments, ed. M. Cain, Nova Publishers

  40. Sangermano M, Roppolo I, Acosta Ortiz R, Garcia Valdez AE, Navarro Tovar AG, Berlanga Duarte ML (2015) Interpenetrated hybrid thiol-ene/epoxy UV-cured network with enhanced impact resistance. Prog Org Coat 78:244–248

    Article  CAS  Google Scholar 

  41. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermalplastic elastomers. Nat Mater 3:115–120

    Article  CAS  PubMed  Google Scholar 

  42. Humbeeck JV (2001) Shape memory alloys: a material and a technology. Adv Eng Mater 3:837–850

    Article  Google Scholar 

  43. Sharif M, Pourabbas B, Sangermano M, Sadeghi Moghadam F, Mohammadi M, Roppolo I, Fazli A (2017) The effect of graphene oxide on UV curing kinetics and properties of SU8 nanocomposites. Polym Int 66(3):405–417

    Article  CAS  Google Scholar 

  44. Acosta Ortiz R, García Valdez AE, Rodriguez Ramos ZH, Acosta Berlanga O, Aguirre Flores R, Méndez Padilla MG, Espinoza Muñoz JF (2017) Development of rigid toughened photocurable epoxy foams. J Polym Res 24:110

    Article  CAS  Google Scholar 

  45. Sangermano M, Tagliaferro A, Foix D, Castellino M, Celasco E (2014) In situ reduction of graphene oxide in an epoxy resin thermally cured with amine. Macromol Mater Eng 299:757–763

    Article  CAS  Google Scholar 

  46. Zhao LM, Feng X, Li YF, Mi XJ (2014) Shape memory effect and mechanical properties of graphene/epoxy composites. Polym Sci, Ser. A 56(5):640–645

    Article  CAS  Google Scholar 

  47. Rossinsky E, Müllerplathe F (2009) Anisotropy of the thermal conductivity in a crystalline polymer: reverse nonequilibrium molecular dynamics simulation of the delta phase of syndiotactic polystyrene. J Chem Phys 130:134905

    Article  CAS  PubMed  Google Scholar 

  48. Choy CL, Greig D (1975) The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate. J Phys C Solid State Phys 8:3121–3130

    Article  CAS  Google Scholar 

  49. Choy CL, Chen FC, Luk WH (1980) Thermal conductivity of oriented crystalline polymers. J Polym Sci Polym Phys 18:1187–1207

    Article  CAS  Google Scholar 

  50. Li A, Zhang C, Zhang YF (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9:437. https://doi.org/10.3390/polym9090437

    Article  CAS  Google Scholar 

  51. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  52. Mu M, Wan C, McNally T (2017) Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins; 2D. Mater 4:042001

    Google Scholar 

  53. Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69:155406–155407

    Article  CAS  Google Scholar 

  54. Luo T, Lloyd JR (2012) Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv Funct Mater 22:2495–2502

    Article  CAS  Google Scholar 

  55. Veca LM, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun YP (2009) Carbon nanosheets for polymeric nanocomposites with high thermal conductivit. Adv Mater 21:2088–2092

    Article  CAS  Google Scholar 

  56. Xiang JL, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49:773–778

    Article  CAS  Google Scholar 

  57. Feldkamp DM, Rousseau I (2010) Effect of the deformation temperaturre on the shape memory behavior of epoxy networks. Macromol Mater Eng 295:726–734

    Article  CAS  Google Scholar 

  58. Williams T, Meador M, Miller S, Scheiman D (2018) Effect of graphene addition on shape memory behavior of epoxy resins, https://ntrs.nasa.gov/search.jsp?R=20120000854 2018–04-19T14:48:53+00:00Z

  59. Kruzelak J, Dosoudil R, Hudec I (2018) Thermooxidative aging of rubber composites based on NR and NBR with incorporated strontium ferrite. J Elastomers Plast 50(1):71–91

    Article  CAS  Google Scholar 

  60. Nimpaiboon A, Amnuaypornsri S, Sakdapipanich J (2013) Influence of gel content on the physical properties of unfilled and carbón black filled natural rubber vulcanizates. Polym Test 32(6):1135–1144

    Article  CAS  Google Scholar 

  61. Xie T, Xiao X (2008) Self-peeling reversible dry adhesive system. Chem Mater 20:2866−2868

    Google Scholar 

  62. Santiago D, Fernandez-Francos X, Ferrando F, De la Flor S (2015) Shape-memory effect in hyperbranched poly(ethyleneimine) modified epoxy thermosets. J Polym Sci B Polym Phys 53:924–933

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Coahuila State Council of Science and Technology (FONCYT-COECYT) for funding this research through Project COAH-2017-C12-C13. We gratefully acknowledge Blanca Margarita Huerta Martinez, Gilberto Francisco Hurtado, Diana Iris Medellin Banda, Efrain Alvidrez Ramos and Jesus Cepeda Garza, for their assistance in the analysis of samples. The contribution of the National Laboratory of Graphenic Materials, based in the Center for Research in Applied Chemistty (CIQA), is also acknowledged for their purchase of the equipment needed for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Acosta Ortiz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta Ortiz, R., Garcia Valdez, A.E., Soria Arguello, G. et al. Photocurable shape-memory polyether-polythioether/graphene nanocomposites and the study of their thermal conductivity. J Polym Res 25, 160 (2018). https://doi.org/10.1007/s10965-018-1552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1552-0

Keywords

Navigation