Skip to main content
Log in

Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: temperature effect

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Because the prediction of the durability of polyamide materials is a very important issue for designers and users, the effect of environment conditions on their mechanical properties is an active field of research. For this reason this experimental investigation was conducted in order to study the effect of temperature on long term ageing of polyamide 6 (PA6) and polyamide 6 reinforced with 30 wt% of glass fibers (PA6GF30). Ageing was realized in distilled water (pH ≈ 6; 100% RH) at 30 °C, 50 °C, 70 °C and 90 °C for up to 80 days. Results highlighted the impact of ageing temperature on both conditioned materials. Thus, several surface damages such as crazing and yellowness were recorded especially at high temperatures indicating the materials degradation. These structure changes were induced by the combined effects of water and temperature. As the water diffuses within the polymer, the glass transition temperature Tg drops progressively with ageing temperature to reach the lowest value for samples aged at 90 °C for both tested materials. This tendency was also observed for Young’s modulus, tensile strength and the elongation at break. Thus, a significant loss in stiffness and strength of both materials was recorded as a function of conditioning temperature. This loss of mechanical properties is mainly caused by hydrolysis process and/or interfacial debonding. The appearance of this irreversible phenomenon rises with ageing temperature. Moreover, contrarily to PA6GF30, the temperature effect was also pointed out on SEM observations of PA6 samples. Thus, the hygrothermal ageing induces a change in the mode of fracture from ductile to moderate brittle one according to the ageing temperature. Accordingly, it seems that the ageing temperature has a great effect on the severity of damage of tested materials after long term immersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bernasconi A, Davoli P, Basile A, Filippi A (2007) Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. Int J Fatigue 29:199–208

    Article  CAS  Google Scholar 

  2. Teixeira D, Giovanela M, Gonella LB, Crespo JS (2013) Influence of flow restriction on the microstructure and mechanical properties of long glass fiber-reinforced polyamide 6.6 composites for automotive applications. Mater Des 47:287–294

    Article  CAS  Google Scholar 

  3. C. Regrain (2009) Comportement, endommagement et fissuration par fluage du polyamide 6 etude experimentale et modelisation: Ph.D.Thesis, Mines Paris Tech

  4. Carrascal I, Casado JA, Polanco JA, Gutiérrez-Solana F (2005) Absorption and diffusion of humidity in Fiber glass- reinforced polyamide. Polym Compos 26:580–586

    Article  CAS  Google Scholar 

  5. Miri V, Persyn O, Lefebvre J-M, Seguela R (2009) Effect of water absorption on the plastic deformation behavior of nylon 6. Eur Polym J 45:757–762

    Article  CAS  Google Scholar 

  6. Silva L, Tognana S, Salgueiro W (2013) Study of the water absorption and its influence on the Young’s modulus in a commercial polyamide. Polym Test 32:158–164

    Article  CAS  Google Scholar 

  7. B. Ledieu (2010) Vieillissement en milieu eau/glycol du polyamide 66 renforcé fibres de verres courtes pour l’application boîte à eau de radiateur de refroidissement moteur: Ph.D.Thesis, École Nationale Supérieure d'Arts et Métiers

  8. Taktak R, Guermazi N, Derbeli J, Haddar N (2015) Effect of hygrothermal aging on the mechanical properties and ductile fracture of polyamide 6: experimental and numerical approaches. Eng Fract Mech 148:122–133

    Article  Google Scholar 

  9. Haddar N, Ksouri I, Kallel T, Mnif N (2014) Effect of hygrothermal ageing on the monotonic and cyclic loading of glass fiber reinforced polyamide. Polym Compos 35:501–508

    Article  CAS  Google Scholar 

  10. El-Mazry C, Correc O, Colin X (2012) A new kinetic model for predicting polyamide 6-6 hydrolysis and its mechanical embrittlement. Polym Degrad Stab 97:1049–1059

    Article  CAS  Google Scholar 

  11. Arhant M, Le Gac PY, Le Gall M, Burtin C, Briançon C, Davies P (2016) Effect of sea water and humidity on the tensile and compressive properties of carbon-polyamide 6 laminates. Compos Part A 91:250–261

    Article  CAS  Google Scholar 

  12. Chaichanawong J, Thongchuea C, Areerat S (2016) Effect of moisture on the mechanical properties of glass fiber reinforced polyamide composites. Adv Powder Technol:898–902. https://doi.org/10.1016/j.apt.2016.02.006

  13. Bergeret A, Pires I, Foulc MP, Abadie B, Ferry L, Crespy A (2001) The hygrothermal behaviour of glass-fibre-reinforced thermoplastic composites: a prediction of the composite lifetime. Polym Test 20:753–763

    Article  CAS  Google Scholar 

  14. Vlasveld DPN, Groenewold J, Bersee HEN, Picken SJ (2005) Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer 46:12567–12576

    Article  CAS  Google Scholar 

  15. Ray BC (2006) Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites. Journal of Colloid Interface Science 298:111–117

    Article  CAS  PubMed  Google Scholar 

  16. Arif MF, Meraghni F, Chemisky Y, Despringre N, Robert G (2014) In situ damage mechanisms investigation of PA66/GF30 composite: effect of relative humidity. Compos Part B 58:487–495

    Article  CAS  Google Scholar 

  17. Chevali VS, Dean DR, Janowski GM (2010) Effect of environmental weathering on flexural creep behavior of long fiber-reinforced thermoplastic composites. Polym Degrad Stab 95:2628–2640

    Article  CAS  Google Scholar 

  18. J. Mercier (2006) “Prise en compte du vieillissement et de l’endommagement dans le dimensionnement de Structures en matériaux composites. Thèse de doctorat, Ecole des Mines de Paris

  19. Launay A, Marco Y, Maitournam MH, Raoult I (2013) Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech Mater 56:1–10

    Article  Google Scholar 

  20. Guermazi N, Ben Tarjem A, Ksouri I, Ayedi HF (2016) On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos Part B 85:294–304

    Article  CAS  Google Scholar 

  21. Scida D, Assarar M, Poilâne C, Ayad R (2013) Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Compos Part B 48:51–58

    Article  CAS  Google Scholar 

  22. Phua YJ, Chow WS, Mohd Ishak ZA (2011) The hydrolytic effect of moisture and hygrothermal aging on poly(butylene succinate)/organo-montmorillonite nanocomposites. Polym Degrad Stab 96:1194–1203

    Article  CAS  Google Scholar 

  23. Z.A. Mohd Ishak, U.S. Ishiaku, J. Karger-Kocsis. Hygrothermal aging and fracture behavior of short-glass-fiber- reinforced rubber-toughened poly(butylene terephthalate) composites. Compos Sci Technol 2000; 60: 803–815

  24. Ksouri I, De Almeida O, Haddar N (2017) Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: physicochemical, mechanical and morphological characterization. Journal of Polymer Resarch 24. https://doi.org/10.1007/s10965-017-1292-6

  25. Guermazi N, Elleuch K, Ayedi HF (2009) The effect of time and aging temperature on structural and mechanical properties of pipeline coating. Mater Des 30:2006–2010

    Article  CAS  Google Scholar 

  26. Chaupart N, Serpe G, Verdu J (1998) Molecular weight distribution and mass changes during polyamide hydrolysis. Polymer 39:1375–1380

    Article  CAS  Google Scholar 

  27. Mohd Ishak ZA, Berry JP (1994) Hygrothermal aging studies of short carbon Fiber reinforced nylon 6.6. J Appl Polym Sci 51:2145–2155

    Article  CAS  Google Scholar 

  28. Eftekhari M, Fatemi A (2016) Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects. Polym Test 51:151–164

    Article  CAS  Google Scholar 

  29. L. Sang, C. Wang, Y. Wang, Z. Wei (2017) Thermo-oxidative ageing effect on mechanical properties and morphology of short fibre reinforced polyamide composites – comparison of carbon and glass fibres. The Royal Society of Chemistry https://doi.org/10.1039/c7ra07884f, 7, 43334, 43344

  30. Richaud E, Diogo OO, Fayolle B, Verdu J, Guilment J, Fernagut F (2013) Review: Auto-oxidation of aliphatic polyamides. Polymer Degradation and Stability 98:1929–1939

    Article  CAS  Google Scholar 

  31. El-Mazry C, Ben Hassine M, Correc O, Colin X (2013) Thermal oxidation kinetics of additive free polyamide 6-6. Polym Degrad Stab 98:22–36

    Article  CAS  Google Scholar 

  32. Dong W, Gijsman P (2010) Influence of temperature on the thermo-oxidative degradation of polyamide 6 films. Polym Degrad Stab 95:1054–1062

    Article  CAS  Google Scholar 

  33. Rudzinski S, Häussler L, Harnisch C, Mäder E, Heinrich G (2011) Glass fibre reinforced polyamide composites: thermal behaviour of sizings. Compos Part A 42:157–164

    Article  CAS  Google Scholar 

  34. M.N. Grigg (2006) Thermo-oxydative degradation of polyamide 6: Ph.D.Thesis, school of physical and chemical sciences Queensland university of Technology

  35. Hu RL aX (1998) Study on discoloration mechanism of polyamide 6 during thermo-oxidative degradation. Polym Degrad Stab 62:523–528

    Article  Google Scholar 

  36. M. Minervino (2013) Effets de la thermo-oxydation sur le comportement mécanique de matériaux composites pour applications aéronautiques Ph.D.Thesis, Ecole doctorale Sciences et ingénieurs en Matériaux, Mécanique, Energétique et Aéronautique

  37. Cerruti P, Carfagna C (2010) Thermal-oxidative degradation of polyamide 6,6 containing metal salts. Polym Degrad Stab 95:2405–2412

    Article  CAS  Google Scholar 

  38. Gonçalves ES, Poulsen L, Ogilby PR (2007) Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water. Polym Degrad Stab 92:1977–1985

    Article  CAS  Google Scholar 

  39. Pillay S, Vaidya UK, Janowski GM (2009) Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates. Compos Sci Technol 69:839–846

    Article  CAS  Google Scholar 

  40. Simar A, Gigliotti M, Grandidier JC, Ammar-Khodja I (2014) Evidence of thermo-oxidation phenomena occurring during hygrothermal aging of thermosetting resins for RTM composite applications. Compos Part A 66:175–182

    Article  CAS  Google Scholar 

  41. Thomason JL, Ali JZ, Anderson J (2010) The thermo-mechanical performance of glass-fibre reinforced polyamide 66 during glycol–water hydrolysis conditioning. Compos Part A 41:820–826

    Article  CAS  Google Scholar 

  42. Boubakri A, Haddar N, Elleuch K, Bienvenu Y (2011) Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane. C R Mécanique 339:666–673

    Article  CAS  Google Scholar 

  43. Zuo X, Shao H, Zhang D, H Z, Guo J (2013) Effects of thermal-oxidative aging on the flammability and thermaloxidative degradation kinetics of tris(tribromophenyl) cyanurate flame retardant PA6/LGF composites. Polym Degrad Stab 98:2774–2783

    Article  CAS  Google Scholar 

  44. D. D. Nguyen (2012) Revêtements polymères sous contraintes environnementales couplées. Ph.D Thesis, Université de la Rochelle

  45. Ferreño D, Carrascal I, Ruiz E, Casado JA (2011) Characterisation by means of a finite element model of the influence of moisture content on the mechanical and fracture properties of the polyamide 6 reinforced with short glass fibre. Polym Test 30:420–428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like also to thank ICA team (EMAC-France) especially Pr. Fabrice Schmidt and Olivier De Almeida for their help provided for this research project.

This work was supported by the Ministry of Higher Education and Scientific Research- Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Ksouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksouri, I., Haddar, N. Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: temperature effect. J Polym Res 25, 153 (2018). https://doi.org/10.1007/s10965-018-1551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1551-1

Keywords

Navigation