Synthesis and characterization of conjugated porous polyazomethines with excellent electrochemical energy storage performance

Abstract

Polymer based energy storage devices have luminous advantages in comparison with currently employed supercapacitors due to the environmental friendliness, cost and versatility. In general conjugated polymers are more conductive than the inorganic battery materials and have greater power capability. In this report the electron-rich conjugated polymers, containing thiophene as the core named polyazomethines ware synthesized. It contains thiophene electron-donating unit and electron withdrawing unit in which quinoxaline integrated in benzene ring. The influence of the π-linkers of the polyazomethines materials on thermal properties, and electrochemical energy storage performance was investigated. Their outstanding electrochemical performance can be attributed to their conductive frameworks, plentiful redox-active units, and homogeneous porous structure. The electrochemical properties of the polyazomethines electrode are examined with cyclic voltammetry and electrochemical impedance spectroscopy. In addition, various electrolyte solutions are studied to investigate the capacitive behavior of polyazomethines. According to the differing electrolyte types, the maximum specific capacitance of PAM-3 electrode is obtained in 1 M NaOH as 253.40 F/g.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Biswas S, Drzal L (2010). Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

  2. 2.

    David A, Dorian G, Gérard B, Pascal G, Maxime B, Deepak D, Pedro G, Jan W, Schubert TJ, Said S (2015). J Mater Chem A 3:13978–13985

    Article  CAS  Google Scholar 

  3. 3.

    Urewicz K, Elpeux S, Bertagna V, Béguin F, Frackowiak E (2001). Chem Phys Lett 347:36–40

    Article  Google Scholar 

  4. 4.

    Hughes M, Chen GZ, Shaffer MS, Fray DJ, Windle AH (2002). Chem Mater 14:1610–1613

    Article  CAS  Google Scholar 

  5. 5.

    Kima B, Kwon J, Ko J, Park J, Too C, Wallace G (2010). Synth Met 160:94–98

    Article  CAS  Google Scholar 

  6. 6.

    Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013). Chem Soc Rev 42:8012–8031

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Jianchang W, Liu C, Deng X, Zhang L, Manman H, Tang J, Tan W, Tian Y, Xu B (2017). RSC Adv 7:45478–45483

    Article  Google Scholar 

  8. 8.

    Kaneto K, Maxfield MR, Nairns DP, MacDiarmid AG, Heeger AJ (1982). J Chem Soc Faraday Trans 78:3417–3429

    Article  CAS  Google Scholar 

  9. 9.

    Trinidad F, Alonso-Lopez J, Nebot M (1987). J Appl Electrochem 17:215–218

    Article  CAS  Google Scholar 

  10. 10.

    Elizabeth WP, Antonio JR, Mark SW (1985). J Phys Chem 89:1441–1447

    Article  Google Scholar 

  11. 11.

    Conway BE (1999) Electrochemical Supercapacitors: scientific fundamentals and technological applications. KluwerAcademia/Plenum Publishers, New York

    Book  Google Scholar 

  12. 12.

    Pacheco-Catalan DE, Smit MA, Morales E (2011). Int J Electrochem Sci 6:78–90

    CAS  Google Scholar 

  13. 13.

    Kotz K, Carlen M (2000). Electrochim Acta 45:2483–2486

    Article  CAS  Google Scholar 

  14. 14.

    Ingole SM, Navale ST, Navale YH, Dhole IA, Mane RS, Stadler FJ, Patil VB (2017). J Solid State Electrochem 21:1817–1826

    Article  CAS  Google Scholar 

  15. 15.

    Pandolfo AG, Hollenkamp AF (2006). J Power Sources 157:11–27

    Article  CAS  Google Scholar 

  16. 16.

    Wang Y, Shi Z, Yi H, Ma Y, Wang C, Chen MCY (2009). J Phys Chem C 113:13103–13107

    Article  CAS  Google Scholar 

  17. 17.

    Lu X, Zhang W, Wang C, Wen TC, Wei Y (2011). Prog Polym Sci 36:671–712

    Article  CAS  Google Scholar 

  18. 18.

    Naoi K, Morita M (2008). Electrochem Soc Interface 17:44–48

    CAS  Google Scholar 

  19. 19.

    Arbizzani CM, Mastragostino et al (2001). J Power Sources 100:164–170

    Article  CAS  Google Scholar 

  20. 20.

    Arbizzani CM, Mastragostino et al (1996). Electrochim Acta 41:21–26

    Article  CAS  Google Scholar 

  21. 21.

    Mastragostino M, Arbizzani C et al (2001). J Power Sources 97-98:812–815

    Article  CAS  Google Scholar 

  22. 22.

    Frackowiak, E., V. Khomenko, et al., (2005) J Power Sources In Press. Corrected Proof

  23. 23.

    Kou Y, Xu Y, Guo Z, Jiang D (2000). Angew Chem Int Ed Engl 50:8753–8757

    Article  CAS  Google Scholar 

  24. 24.

    Xu F, Chen X, Tang Z, Wu D, Fu R, Jiang D (2014). Chem Commun 50:4788–4790

    Article  CAS  Google Scholar 

  25. 25.

    Sakaushi K, Hosono E, Nickerl G, Zhou H, Kaskel S, Eckert J (2014). J Power Sources 245:553–556

    Article  CAS  Google Scholar 

  26. 26.

    Sakaushi K, Hosono E, Nickerl G, Gemming T, Zhou H, Kaskel S, Eckert J (2013). Nat Commun 4:1485

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Imai Y, Maldar NN, Kakimoto M (1985). J Polym Sci Polym Chem 23:1797–1803

    Article  CAS  Google Scholar 

  28. 28.

    Lai C-T, Chien R-H, Liu C-W, Hong J-L (2011). J Polym Sci Part A: Polym Chem 49:2059–2069

    Article  CAS  Google Scholar 

  29. 29.

    Hergenrother PM (1969). J Polym Sci Part A: Polym Chem 7:945–957

    Article  CAS  Google Scholar 

  30. 30.

    Ghaemy M, Porazizollahy R, Bazzar M (2011). Macromol Res 19:528–536

    Article  CAS  Google Scholar 

  31. 31.

    Chauhan ACP (2014). J Anal Bioanal Tech https://doi.org/10.4172/2155-9872.1000212

  32. 32.

    Petrus ML, Bouwer RKM, Lafont U, Murthy DHK, Kist RJP, Bohm ML, Olivier Y, Savenije TJ, Siebbeles LDA, Greenhamd NC, Dingmans TJ (2013). Polym Chem 4:4182–4191

    Article  CAS  Google Scholar 

  33. 33.

    Mastrorilli P, Dell’Anna MM, Rizzuti A, Mali M, Zapparoli M, Leonelli C (2015). Molecules 20:18661–18684

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Navale YH, Navale ST, Chougule MA, Ingole SM, Stadler FJ, Mane RS, Naushad M, Patil VB (2017). J Colloid Interface Sci 487:458–464

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Navale ST, Mali VV, Pawar SA, Mane RS, Naushad M, Stadler FJ, Patil VB (2015). RSC Adv 5:51961–51965

    Article  CAS  Google Scholar 

  36. 36.

    Sing KSW, Evertt DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985). Pure & Appl Chem 57:603–619

  37. 37.

    Yu H, Tian M, Shen C, Wang Z (2013). Polym Chem 4:961

    Article  CAS  Google Scholar 

  38. 38.

    Kotz R, Carlen M (1999). Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  39. 39.

    Dhole IA, Navale ST, Navale YH, Jadhav YM, Pawar CS, Suryavanshi SS, Patil VB (2017). J Mater Sci Mater Electron 28:10819–10829

    Article  CAS  Google Scholar 

  40. 40.

    Aleksic MM, Pantic J, Kapetanovic VP (2014). Facta Universitatis, Series Physics, Chemistry and Technology 12:55–63

    Article  Google Scholar 

  41. 41.

    Aleksic MM, Radulovic V, Lijeskic N, Kapetanovic V (2012). Curr Anal Chem 8:133–142

    Article  CAS  Google Scholar 

  42. 42.

    Aleksic MM, Radulovic V, Kapetanovic V, Agbaba D (2013). Electrochim Acta 106:75–81

    Article  CAS  Google Scholar 

  43. 43.

    Wang P, Qiong W, Han L, Wang S, Fang S, Zhang Z, Sun S (2015). RSC Adv 5:27290

    Article  CAS  Google Scholar 

  44. 44.

    Perepichka IF, Perepichka DF, Meng H, Wudl F (2005). Adv Mater 17:2281–2305

    Article  CAS  Google Scholar 

  45. 45.

    Andy R, John D, Ian R, Shimshon G, John PF (1994). J Power Sources 47:89–107

    Article  Google Scholar 

  46. 46.

    Dubal DP, Patil SV, Jagadale AD, Lokhande CD (2011). J Alloys Compd 509:8183–8188

    Article  CAS  Google Scholar 

  47. 47.

    Sezai Sarac A, Ates M, Kilic B (2008). Int J Electrochem Sci 3:777–786

    Google Scholar 

  48. 48.

    Ates M, Sezai Sarac A (2009). Prog Org Coat 65:281–287

    Article  CAS  Google Scholar 

  49. 49.

    Sarac AS, Sezgin S, Ates M, Turhan CM, Parlak EA, Irfanoglu B (2008). Prog Org Coat 62:331

    Article  CAS  Google Scholar 

  50. 50.

    Lang G, Bacskai J, Inzelt G (1991). Electrochim Acta 38:773

    Article  Google Scholar 

  51. 51.

    Bonazzola C, Calvo EJ (1996). J Electroanal Chem 405:59

    Article  Google Scholar 

Download references

Acknowledgements

The author AAG thanks to University Grant Commission, New Delhi for financial assistance in the form of major research project: UGC-MAJOR-MRP-CHEM-2013-39804.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Ghanwat.

Electronic supplementary material

ESM 1

(DOC 15935 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salunkhe, P.H., Patil, Y.S., Patil, V.B. et al. Synthesis and characterization of conjugated porous polyazomethines with excellent electrochemical energy storage performance. J Polym Res 25, 147 (2018). https://doi.org/10.1007/s10965-018-1545-z

Download citation

Keywords

  • Electrochemistry
  • Polyazomethine thin film electrode
  • Supercapacitor