Abstract
Polymer based energy storage devices have luminous advantages in comparison with currently employed supercapacitors due to the environmental friendliness, cost and versatility. In general conjugated polymers are more conductive than the inorganic battery materials and have greater power capability. In this report the electron-rich conjugated polymers, containing thiophene as the core named polyazomethines ware synthesized. It contains thiophene electron-donating unit and electron withdrawing unit in which quinoxaline integrated in benzene ring. The influence of the π-linkers of the polyazomethines materials on thermal properties, and electrochemical energy storage performance was investigated. Their outstanding electrochemical performance can be attributed to their conductive frameworks, plentiful redox-active units, and homogeneous porous structure. The electrochemical properties of the polyazomethines electrode are examined with cyclic voltammetry and electrochemical impedance spectroscopy. In addition, various electrolyte solutions are studied to investigate the capacitive behavior of polyazomethines. According to the differing electrolyte types, the maximum specific capacitance of PAM-3 electrode is obtained in 1 M NaOH as 253.40 F/g.
This is a preview of subscription content, access via your institution.

















References
- 1.
Biswas S, Drzal L (2010). Chem Mater 22:5667–5671
- 2.
David A, Dorian G, Gérard B, Pascal G, Maxime B, Deepak D, Pedro G, Jan W, Schubert TJ, Said S (2015). J Mater Chem A 3:13978–13985
- 3.
Urewicz K, Elpeux S, Bertagna V, Béguin F, Frackowiak E (2001). Chem Phys Lett 347:36–40
- 4.
Hughes M, Chen GZ, Shaffer MS, Fray DJ, Windle AH (2002). Chem Mater 14:1610–1613
- 5.
Kima B, Kwon J, Ko J, Park J, Too C, Wallace G (2010). Synth Met 160:94–98
- 6.
Xu Y, Jin S, Xu H, Nagai A, Jiang D (2013). Chem Soc Rev 42:8012–8031
- 7.
Jianchang W, Liu C, Deng X, Zhang L, Manman H, Tang J, Tan W, Tian Y, Xu B (2017). RSC Adv 7:45478–45483
- 8.
Kaneto K, Maxfield MR, Nairns DP, MacDiarmid AG, Heeger AJ (1982). J Chem Soc Faraday Trans 78:3417–3429
- 9.
Trinidad F, Alonso-Lopez J, Nebot M (1987). J Appl Electrochem 17:215–218
- 10.
Elizabeth WP, Antonio JR, Mark SW (1985). J Phys Chem 89:1441–1447
- 11.
Conway BE (1999) Electrochemical Supercapacitors: scientific fundamentals and technological applications. KluwerAcademia/Plenum Publishers, New York
- 12.
Pacheco-Catalan DE, Smit MA, Morales E (2011). Int J Electrochem Sci 6:78–90
- 13.
Kotz K, Carlen M (2000). Electrochim Acta 45:2483–2486
- 14.
Ingole SM, Navale ST, Navale YH, Dhole IA, Mane RS, Stadler FJ, Patil VB (2017). J Solid State Electrochem 21:1817–1826
- 15.
Pandolfo AG, Hollenkamp AF (2006). J Power Sources 157:11–27
- 16.
Wang Y, Shi Z, Yi H, Ma Y, Wang C, Chen MCY (2009). J Phys Chem C 113:13103–13107
- 17.
Lu X, Zhang W, Wang C, Wen TC, Wei Y (2011). Prog Polym Sci 36:671–712
- 18.
Naoi K, Morita M (2008). Electrochem Soc Interface 17:44–48
- 19.
Arbizzani CM, Mastragostino et al (2001). J Power Sources 100:164–170
- 20.
Arbizzani CM, Mastragostino et al (1996). Electrochim Acta 41:21–26
- 21.
Mastragostino M, Arbizzani C et al (2001). J Power Sources 97-98:812–815
- 22.
Frackowiak, E., V. Khomenko, et al., (2005) J Power Sources In Press. Corrected Proof
- 23.
Kou Y, Xu Y, Guo Z, Jiang D (2000). Angew Chem Int Ed Engl 50:8753–8757
- 24.
Xu F, Chen X, Tang Z, Wu D, Fu R, Jiang D (2014). Chem Commun 50:4788–4790
- 25.
Sakaushi K, Hosono E, Nickerl G, Zhou H, Kaskel S, Eckert J (2014). J Power Sources 245:553–556
- 26.
Sakaushi K, Hosono E, Nickerl G, Gemming T, Zhou H, Kaskel S, Eckert J (2013). Nat Commun 4:1485
- 27.
Imai Y, Maldar NN, Kakimoto M (1985). J Polym Sci Polym Chem 23:1797–1803
- 28.
Lai C-T, Chien R-H, Liu C-W, Hong J-L (2011). J Polym Sci Part A: Polym Chem 49:2059–2069
- 29.
Hergenrother PM (1969). J Polym Sci Part A: Polym Chem 7:945–957
- 30.
Ghaemy M, Porazizollahy R, Bazzar M (2011). Macromol Res 19:528–536
- 31.
Chauhan ACP (2014). J Anal Bioanal Tech https://doi.org/10.4172/2155-9872.1000212
- 32.
Petrus ML, Bouwer RKM, Lafont U, Murthy DHK, Kist RJP, Bohm ML, Olivier Y, Savenije TJ, Siebbeles LDA, Greenhamd NC, Dingmans TJ (2013). Polym Chem 4:4182–4191
- 33.
Mastrorilli P, Dell’Anna MM, Rizzuti A, Mali M, Zapparoli M, Leonelli C (2015). Molecules 20:18661–18684
- 34.
Navale YH, Navale ST, Chougule MA, Ingole SM, Stadler FJ, Mane RS, Naushad M, Patil VB (2017). J Colloid Interface Sci 487:458–464
- 35.
Navale ST, Mali VV, Pawar SA, Mane RS, Naushad M, Stadler FJ, Patil VB (2015). RSC Adv 5:51961–51965
- 36.
Sing KSW, Evertt DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985). Pure & Appl Chem 57:603–619
- 37.
Yu H, Tian M, Shen C, Wang Z (2013). Polym Chem 4:961
- 38.
Kotz R, Carlen M (1999). Electrochim Acta 45:2483–2498
- 39.
Dhole IA, Navale ST, Navale YH, Jadhav YM, Pawar CS, Suryavanshi SS, Patil VB (2017). J Mater Sci Mater Electron 28:10819–10829
- 40.
Aleksic MM, Pantic J, Kapetanovic VP (2014). Facta Universitatis, Series Physics, Chemistry and Technology 12:55–63
- 41.
Aleksic MM, Radulovic V, Lijeskic N, Kapetanovic V (2012). Curr Anal Chem 8:133–142
- 42.
Aleksic MM, Radulovic V, Kapetanovic V, Agbaba D (2013). Electrochim Acta 106:75–81
- 43.
Wang P, Qiong W, Han L, Wang S, Fang S, Zhang Z, Sun S (2015). RSC Adv 5:27290
- 44.
Perepichka IF, Perepichka DF, Meng H, Wudl F (2005). Adv Mater 17:2281–2305
- 45.
Andy R, John D, Ian R, Shimshon G, John PF (1994). J Power Sources 47:89–107
- 46.
Dubal DP, Patil SV, Jagadale AD, Lokhande CD (2011). J Alloys Compd 509:8183–8188
- 47.
Sezai Sarac A, Ates M, Kilic B (2008). Int J Electrochem Sci 3:777–786
- 48.
Ates M, Sezai Sarac A (2009). Prog Org Coat 65:281–287
- 49.
Sarac AS, Sezgin S, Ates M, Turhan CM, Parlak EA, Irfanoglu B (2008). Prog Org Coat 62:331
- 50.
Lang G, Bacskai J, Inzelt G (1991). Electrochim Acta 38:773
- 51.
Bonazzola C, Calvo EJ (1996). J Electroanal Chem 405:59
Acknowledgements
The author AAG thanks to University Grant Commission, New Delhi for financial assistance in the form of major research project: UGC-MAJOR-MRP-CHEM-2013-39804.
Author information
Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(DOC 15935 kb)
Rights and permissions
About this article
Cite this article
Salunkhe, P.H., Patil, Y.S., Patil, V.B. et al. Synthesis and characterization of conjugated porous polyazomethines with excellent electrochemical energy storage performance. J Polym Res 25, 147 (2018). https://doi.org/10.1007/s10965-018-1545-z
Received:
Accepted:
Published:
Keywords
- Electrochemistry
- Polyazomethine thin film electrode
- Supercapacitor