Skip to main content
Log in

Chain transfer reaction to diethylzinc in ethylene polymerization by metallocene catalysts

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The addition of diethyl zinc into the metallocene catalytic system for ethylene polymerization efficiently reduces the molecular weight of the resulted polyethylene due to the transfer reaction of the propagation chain to the dialkyl zinc. The alkyl exchanging reaction between diethyl zinc and the methylaluminoxane or trimethyl aluminum may result in the new zinc compounds. Therefore, the result of regression analysis shows that the chain transfer is not an ideal first order reaction. The regression result also shows that the transfer reaction to zinc is much stronger than other transfer reaction. The reaction results in the long alkyl zinc, and the latter is easily be oxidized, and then forms the polyethylene contains an abundance of hydroxyl capped chain end, which has been identified by means of 13C-NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Britovsek GJP, Cohen SA, Gibson VC, van Meurs M (2014) Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. J Am Chem Soc 126:10701–10712

    Article  CAS  Google Scholar 

  2. Chien JCW, Wang BP (1990) Metallocene-methylaluminoxane catalysts for olefin polymerization V comparison of Cp2ZrCl2 and CpZrCl3. J Polym Sci A Polym Chem 28:15–38

    Article  CAS  Google Scholar 

  3. Thorshaug K, Rytter E, Ystenes M (1997) Pressure effects on termination mechanisms during ethene polymerization catalyzed by dicyclopentadienylzirconium dichloride/methylaluminoxane. Macromol Rapid Commun 18:715–722

    Article  CAS  Google Scholar 

  4. Rogers JS, Bazan GC (2000) Oligomerization–transmetalation reactions of Cp*CrMe2(PMe3)/methylaluminoxane catalysts. Chem Commun 2000:1209–1210

    Article  Google Scholar 

  5. Bazan GC, Rogers JS, Fang CC (2001) Catalytic insertion of ethylene into Al−C bonds with pentamethylcyclopentadienyl−chromium(III) complexes. Organometallics 20:2059–2064

    Article  CAS  Google Scholar 

  6. Mani G, Gabbaï FP (2004) A neutral chromium(III) catalyst for the living “Aufbaureaktion”. Angew Chem Int Ed 43:2263–2266

    Article  CAS  Google Scholar 

  7. Mani G, Gabbaï FP (2004) [Cp*Cr(C6F5)(Me)(Py)] as a living chromium(III) catalyst for the “Aufbaureaktion”. Organometallics 23:4608–4613

    Article  CAS  Google Scholar 

  8. Natta G, Mazzanti G, Longi P, Bernardini F (1959) Influence of hydrogen on the anionic coördinated polymerization of propylene and ethylene. Chim Ind 41:519–526

    CAS  Google Scholar 

  9. Bohm LC (1978) Ethylene polymerization process with a highly active Ziegler-Natta catalyst: 2 molecular weight regulation. Polymer 19:562–566

    Article  Google Scholar 

  10. Kaminsky W, Luker H (1984) Influence of hydrogen on the polymerization of ethylene with the homogeneous ziegler system bis(cyclopentadienyl)zirconiumdichloride/aluminoxane. Makromol Chem Rapid Commun 5:225–228

    Article  CAS  Google Scholar 

  11. Bochmann M, Lancaster SJ (1994) Monomer–dimer equilibria in homo- and heterodinuclear cationic alkylzirconium complexes and their role in polymerization catalysis. Angew Chem Int Ed Engl 33:1634–1637

    Article  Google Scholar 

  12. Lieber S, Brintzinger HH (2000) Propene polymerization with catalyst mixtures containing different ansa-Zirconocenes: chain transfer to alkylaluminum cocatalysts and formation of stereoblock polymers. Macromolecules 33:9192–9199

    Article  CAS  Google Scholar 

  13. Murtuza S, Casagrande OL, Jordan RF (2002) Ethylene polymerization behavior of tris(pyrazolyl)borate titanium(IV) complexes. Organometallics 21:1882–1890

    Article  CAS  Google Scholar 

  14. Pelletier JF, Mortreux A, Olonde X, Bujadoux K (1996) Synthesis of new dialkylmagnesium compounds by living transfer ethylene oligo- and polymerization with lanthanocene catalysts. Angew Chem Int Ed Engl 35:1854–1856

    Article  CAS  Google Scholar 

  15. Chenal T, Olonde X, Pelletier JF, Bujadoux K, Mortreux A (2007) Controlled polyethylene chain growth on magnesium catalyzed by lanthanidocene: a living transfer polymerization for the synthesis of higher dialkyl-magnesium. Polymer 48:1844–1856

    Article  CAS  Google Scholar 

  16. Briquel R, Mazzolini JM, Bris TL, Boyron O, Boisson F, Delolme F, Agosto F, Boisson C, Spitz R (2008) Polyethylene building blocks by catalyzed chain growth and efficient end functionalization strategies, including click chemistry. Angew Chem Int Ed 47:9311–9313

    Article  CAS  Google Scholar 

  17. van Meurs M, Britovsek GJP, Gibson VC, Cohen SA (2005) Polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts: a comparative investigation of highly active catalyst systems across the transition series. J Am Chem Soc 127:9913–9923

    Article  CAS  PubMed  Google Scholar 

  18. Britovsek GJP, Cohen SA, Gibson VC, Maddox PJ, van Meurs M (2002) Iron-catalyzed polyethylene chain growth on zinc: linear α-olefins with a Poisson distribution. Angew Chem Int Ed 41:489–491

    Article  CAS  Google Scholar 

  19. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT (2006) Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 312:714–719

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Sita LR (2008) Highly efficient, living coordinative chain-transfer polymerization of propene with ZnEt2: practical production of ultrahigh to very low molecular weight amorphous atactic polypropenes of extremely narrow polydispersity. J Am Chem Soc 130:442–443

    Article  CAS  PubMed  Google Scholar 

  21. Ahmadi M, Rashedi R, Ahmadjo S, Karimi M, Zahmaty M, Mortazavi SMM (2018) New olefin block copolymers of ethylene/1-hexene synthesized by iron and zirconocene catalysts in the presence of ZnEt2. J Therm Anal Calorim 131:2523–2533

    Article  CAS  Google Scholar 

  22. Ziegler K, Gellert HG, Kühlhorn H, Martin H, Meyer K, Nagel K, Sauer H, Zosel K (1952) Aluminium-organische Synthese im Bereich olefinischer Kohlenwasserstoffe. Angew Chem 64:323–329

    Article  CAS  Google Scholar 

  23. Bogaert S, Chenal T, Mortreux A, Carpentier JF (2001) Unusual product distribution in ethylene oligomerization promoted by in situ ansa-chloroneodymocene–dialkylmagnesium systems. J Mol Catal A Chem 190:207–214

    Article  Google Scholar 

  24. Wang W, Fan Z, Zhu Y, Zhang Y, Feng L (2002) Effects of cocatalyst on structure distribution of propylene polymers catalyzed by rac-Me2Si(Ind)2ZrCl2/aluminoxane. Eur Polym J 38:1551–1558

    Article  CAS  Google Scholar 

  25. Wang W (2015) Effect of Diethylzinc on the activity of ethylene polymerization by Metallocene catalyst. Macromol React Eng 9:333–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Hou, L., Zhang, T. et al. Chain transfer reaction to diethylzinc in ethylene polymerization by metallocene catalysts. J Polym Res 25, 145 (2018). https://doi.org/10.1007/s10965-018-1541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1541-3

Keywords

Navigation