In situ chemical deposition of PPy/NDSA and PPy/DBSA layers on QCM electrodes: synthesis, structural, morphological and ammonia sensing performances study

  • Boualem Mettai
  • Ahmed Mekki
  • Fateh Merdj
  • Zakaria Bekkar Djelloul Sayah
  • Kouadri Moustefai Soumia
  • Zitouni Safiddine
  • Rachid Mahmoud
  • Mohamed Mehdi Chehimi


Aiming to detect ammonia vapor, polypyrrole (PPy) thin layers were in situ coated on AT-cut 10 MHz quartz crystal microbalance QCM electrode by a facile chemical polymerization process using two organic acids as dopants, i.e. dodecylbenzene sulfonic acid (BDSA) and 1–5 naphthalene disulfonic acid (NDSA). Then after, polymers structural and morphological features were determined by FTIR, Raman spectroscopy and Scanning Electron Microscopy (SEM) techniques. Ammonia vapor sensing tests were related to QCM frequency changes recorded upon vapor adsorption and desorption on PPy films, it was found that frequency shifts varied linearly with both vapor concentration expressed in part per million (ppm) and polymer’s thin layer thickness given in nanometer (nm). This fact has been assumed to be mainly related to the electrostatic interactions established between ammonia vapor molecules and the polymer dopant agents. Tests have shown that films based PPy/NDSA exhibit high sensitivity around 3 ppm and detection limit of 4 ppm over films based PPy/DBSA. Interestingly, an excellent recovery time less than 3 min has been also recorded with PPy/NDSA thin layers. Moreover, when applying Fick’s second law, they have also shown a high diffusion constant.


Polypyrrole Organic acids dopant (NDSA/DBSA) Ammonia sensing QCM sensors Gas diffusion constant 



Authors are grateful to both of Military Polytechnic School and Université Hassiba Ben Bouali Chlef, Algeria, for financial support granted to the preparation of B. Mettai PhD thesis under the project number 55 Dept. GP/CSD/2015. The thankfulness is also extended to Macromolecular Chemistry Laboratory member’s, for their precious contribution and insightful discussions. The National Institute for Criminality is acknowledged for providing the assistance with FTIR, Raman and SEM measurements.


  1. 1.
    Lee HSN, Basheer C, Lee HK (2006) Determination of trace level chemical warfare agents in water and slurry samples using hollow fibre-protected liquid-phase micro extraction followed by gas chromatography-mass spectrometry. J Chromato A 1124:91–96CrossRefGoogle Scholar
  2. 2.
    Lowinsohn D, Bertotti M (2006) Electrochemical sensors: fundamentals and applications in microenvironments. Quim Nova 29:1318–1325CrossRefGoogle Scholar
  3. 3.
    Sato T, Plashnitsa VV, Utiyama M, Miura N (2010) Potentiometric YSZ-based sensor using NiO sensing electrode aiming at detection of volatile organic compounds (VOCs) in air environment. Electrochem Commun 12:524–526CrossRefGoogle Scholar
  4. 4.
    Mead MI, Popoola OAM, Stewart GB, Landshoff P, Calleja M, Hayes M, Baldovi JJ, McLeod MW, Hodgson TF, Dicks J, Lewis A, Cohen J, Baron R, Saffell JR, Jones RL (2013) The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks at electrochemical. Atmos Environ 70:186–203CrossRefGoogle Scholar
  5. 5.
    Lee DS, Jung JK, Lim JW, Huh JS, Lee DD (2001) Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis. Sens Actuators B: Chem 77:228–236CrossRefGoogle Scholar
  6. 6.
    Zhang WM, Hu JS, Song WG, Wan LJ (2007) Detection of VOCs and their concentrations by a single SnO2 sensor using kinetic information. Sens Actuators B: Chem 123:454–460CrossRefGoogle Scholar
  7. 7.
    Mishra RK, Sahay PP (2012) Synthesis characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles. Ceram Int 38:2295–2304CrossRefGoogle Scholar
  8. 8.
    Si P, Mortensen J, Komolov A, Denborg J, Møller PJ (2007) Polymer coated quartz crystal microbalance sensors or detection of volatile organic compounds in gas mixtures. Anal Chim Acta 597:223–230CrossRefGoogle Scholar
  9. 9.
    Shafiqul Islam AKM, Ismail Z, Ahmad MN, Saad B, Othman AR, AYMd S, Daud A, Ishak Z (2005) Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs). Sens Actuators B: Chem 109:238–243CrossRefGoogle Scholar
  10. 10.
    Khot LR, Panigrahi S, Lin D (2011) Development and evaluation of piezoelectric polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications. Sens Actuators B: Chem 153:1–10CrossRefGoogle Scholar
  11. 11.
    Fan X, Du B (2012) Selective detection of trace p-xylene by polymer-coated QCM sensors. Sens Actuators B: Chem 166:753–760CrossRefGoogle Scholar
  12. 12.
    Clifford Ho K, Lindgren RE, Rawlinson KS, McGrath LK, Wright JL (2003) Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds. Sensors 3:236–247CrossRefGoogle Scholar
  13. 13.
    Fang M, Vetelino K, Rothery M, Hines J, Frye GC (1999) Detection of organic chemicals by SAW sensor array. Sens Actuators B: Chem 56:155–157CrossRefGoogle Scholar
  14. 14.
    Fernández MJ, Fontecha JL, Sayago I, Aleixandre M, Lozano J, Gutiérrez J, Gràcia I, Cané C, del Carmen HM (2007) Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors. Sens Actuators B: Chem 127:277–283CrossRefGoogle Scholar
  15. 15.
    Malkeshi H, Moghaddam HM (2016) Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method. J Polym Res 23:1–9CrossRefGoogle Scholar
  16. 16.
    Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766CrossRefGoogle Scholar
  17. 17.
    Mane AT, Sartale SD, Patil VB (2015) Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films: synthesis, structural, morphological, gas sensing and impedance study. J Mater Sci Mater El 26:8497–8506CrossRefGoogle Scholar
  18. 18.
    Waghmode BJ, Husain Z, Joshi M, Sathaye SD, Patil KR, Malkhede DD (2016) Synthesis and study of calixarene-doped polypyrrole-TiO2/ZnO composites: antimicrobial activity and electrochemical sensors. J Polym Res 23:35CrossRefGoogle Scholar
  19. 19.
    Matindoust S, Farzi A, Nejad M B, Abadi M H S, Zou Z, Zheng LR (2017) Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. J Mater Sci Mater El. 1–9.
  20. 20.
    Nunes PJ, Vieira P, Ferreira A, Paleo AJ, Rocha JG, Lanceros-Méndez S (2012) Piezoresistive effect in spin-coated polyaniline thin films. J Polym Res 19:9815–9821CrossRefGoogle Scholar
  21. 21.
    Moghaddam HM, Malkeshi H (2016) Self-assembly synthesis and ammonia gas-sensing properties of ZnO/Polythiophene nanofibers. J Mater Sci Mater El 27:8807–8815CrossRefGoogle Scholar
  22. 22.
    Córdova-Mateo E, Poater J, Teixeira-Dias B, Bertran O, Estrany F, del Valle LJ, Solà M, Alemán C (2014) Electroactive polymers for the detection of morphine. J Polym Res 21:565–577CrossRefGoogle Scholar
  23. 23.
    Nylander C, Armgarth M, Lundström I (1983) An ammonia detector based on a conducting polymer. Anal Chem Symp Ser 17:203–207Google Scholar
  24. 24.
    Bartlett PN, Archer PBM, Ling-Chung SK (1989) Conducting polymer gas sensors part I: fabrication and characterization. Sens Actuators B: Chem 19:125–140CrossRefGoogle Scholar
  25. 25.
    Bartlett PN, Ling-Chung SK (1989) Conducting polymer gas sensors part II: response of polypyrrole to methanol vapour. Sens Actuators B: Chem 19:141–150CrossRefGoogle Scholar
  26. 26.
    Bartlett PN, Ling-Chung SK (1989) Conducting polymer gas sensors part III: results for four different polymers and five different vapours. Sens Actuators B: Chem 20:287–292CrossRefGoogle Scholar
  27. 27.
    Mabrook MF, Pearson C, Petty MC (2006) Inkjet-printed polypyrrole thin films for vapour sensing. Sens Actuators B: Chemical 115:547–551CrossRefGoogle Scholar
  28. 28.
    Kwon OS, Park SJ, Yoon H, Jang J (2012) Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. Chem Comm 48:10526–10528CrossRefGoogle Scholar
  29. 29.
    Qin H, Kulkarni A, Zhang H, Kim H, Jiang D, Kim T (2011) Polypyrrole thin film fiber optic chemical sensor for detection of VOCs. Sens Actuators B: Chem 158:223–228CrossRefGoogle Scholar
  30. 30.
    El-Sherif M, Bansal L, Yuan J (2012) Fiber optic sensors for detection of toxic and biological threats. Sensors 7:3100–3118CrossRefGoogle Scholar
  31. 31.
    Kan X, Zhou H, Li C, Zhu A, Xing Z, Zhao Z (2012) Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film. Electrochim Acta 63:69–75CrossRefGoogle Scholar
  32. 32.
    Ding B, Kim J, Miyazaki Y, Shiratori S (2004) Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH 3 detection. Sens Actuators B: Chem 101:373–380CrossRefGoogle Scholar
  33. 33.
    Su PG, Chang YP (2008) Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/ag/TiO2 nanoparticles composite thin films. Sens Actuators B: Chem 129:915–920CrossRefGoogle Scholar
  34. 34.
    Cosnier S, Perrot H, Wessel R (2001) Biotinylated polypyrrole modified quartz crystal microbalance for the fast and reagent less determination of avidin concentration. Electroanalysis 13:971–974CrossRefGoogle Scholar
  35. 35.
    Mekki A, Mettai B, Ihdene Z, Mahmoud R, Mekhalif Z (2013) Inverse gas chromatography characterization of polyaniline complexes: application to volatile organic compounds sensing. Iran Polym J 22:677–687CrossRefGoogle Scholar
  36. 36.
    Mecea VM (2006) Is quartz crystal microbalance really a mass sensor. Sens Actuators A: Physical 128:270–277CrossRefGoogle Scholar
  37. 37.
    Ayad MM (1994) Quartz crystal microbalance study for chemical synthesis of Polypyrrole. J Appli Polym Sci 53:1331–1337CrossRefGoogle Scholar
  38. 38.
    Torresi RM, Cordoba de Torresi SI, Matencio T, De Paoli M-A (1995) Ionic exchanges in dodecylbenzenesulfonate-doped polypyrrole part II: electrochemical quartz crystal microbalance study. Synth Met 72:283–287CrossRefGoogle Scholar
  39. 39.
    Xing S, Zhao G (2007) Morphology, structure and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions. J Appli Polym Sci 104:1987–1996CrossRefGoogle Scholar
  40. 40.
    Omastova M, Trchova M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455CrossRefGoogle Scholar
  41. 41.
    Janata J (2009) Principles of Chemical Sensors, Springer Dordrecht Heidelberg London New York, ISBN 978–0–387-69930-1, p 69–70Google Scholar
  42. 42.
    Junting L, Zhihua C, Charles RM (1992) Effect of reagent concentrations used to synthesize polypyrrole on the chemical characteristics and optical and electronic properties of the resulting polymer. Synth Metal 46:53–69CrossRefGoogle Scholar
  43. 43.
    Ihdene Z, Mekki A, Mettai B, Mahmoud R, Hamada B, Chehimi MM (2014) Quartz crystal microbalance VOCs sensor based on dip coated polyaniline emeraldine salt thin films. Sens Actuators B: Chem 203:647–654CrossRefGoogle Scholar
  44. 44.
    Ayad MM, El-Hefnawey G, Torad NL (2009) A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. J Hazard Mater 168:85–88CrossRefGoogle Scholar
  45. 45.
    Ayad MM, Torad NL (2009) Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance. Talanta 78:1280–1285CrossRefGoogle Scholar
  46. 46.
    da Silva JP, Temperini MLA, de Torresi SC (1999) Secondary doping of polyaniline studied by resonance raman spectroscopy. Electrochim Acta 44:1887–1891CrossRefGoogle Scholar
  47. 47.
    Kim DY, Lee JY, Kim CY, Kang ET, Tan KL (1995) Difference in doping behavior between polypyrrole films and powders. Synth Met 72:243–248CrossRefGoogle Scholar
  48. 48.
    Jing L, Meixiang W (2001) Polypyrrole doped with 1,5-naphthalendisulfonic acid. Synth Met 124:317–321CrossRefGoogle Scholar
  49. 49.
    Min-kyu S, Young-Taek K, Bun-Seok K, Jinhwan K, Kookheon C, Hee-Woo R (2004) Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids. Synth Met 141:315–319CrossRefGoogle Scholar
  50. 50.
    Jayamurgan P, Mahalingam T, Ponnuswamy V, Ashokan S (2013) The effect of dopant on structural, thermal and morphological properties of DBSA-doped polypyrrole. Iran Polym J 22:219–225CrossRefGoogle Scholar
  51. 51.
    Bilal S, Perveen F, Ali Shah A-H (2015) Chemical synthesis of polypyrrole doped with dodecyl benzene sulfonic acid. J Sci Innov Res 4:33–42Google Scholar
  52. 52.
    Liu J, Wang X, Hu X, Xiao A, Wan M (2008) Studies of influence of naphthalene mono/Disulfonic acid dopant on thermal stability of Polypyrrole. J Appli Polym Sci 109:997–1001CrossRefGoogle Scholar
  53. 53.
    Crank J (1975) The mathematics of diffusion: 2d Ed. Clarendon PressGoogle Scholar
  54. 54.
    Carquigny S, Sanchez J-B, Lakard FBB, Lallemand F (2009) Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta 78:199–206CrossRefGoogle Scholar
  55. 55.
    Joshi A, Gangal SA, Gupta SK (2011) Sensing properties of polypyrrole thin films at room temperature. Sens Actuators B: chemical 156:938–942CrossRefGoogle Scholar
  56. 56.
    Jain S, Karmakar N, Shah A, Kothari DC, Mishra S, Shimpi NG (2007) Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Appli. Surf Sci 396:1317–1325CrossRefGoogle Scholar
  57. 57.
    Li Y, Ban H, Yang M (2016) Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sens Actuators B: Chemical 224:449–457CrossRefGoogle Scholar
  58. 58.
    Tang Y, Ao D, Li W, Zu X, Li S, Fu YQ (2018) NH3 sensing property and mechanisms of quartz surface acoustic wave sensors deposited with SiO2, TiO2, and SiO2-TiO2 composite films. Sens Actuators B: Chemical 254:1165–1173CrossRefGoogle Scholar
  59. 59.
    Cui S, Yang L, Wang J, Wang X (2016) Fabrication of a sensitive gas sensor based on PPy/TiO2 nanocomposites films by layer-by-layer self-assembly and its application in food storage. Sens Actuators B: Chemical 233:337–346CrossRefGoogle Scholar
  60. 60.
    Tang Y-L, Li Z-J, Ma J-Y, Guo Y-J, Fu Y-Q, Zu X-T (2014) Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices. Sens Actuators B: Chemical 201:114–121CrossRefGoogle Scholar
  61. 61.
    Su P-G, Chuang T-Y (2017) Simple and rapid differentiation of toxic gases using a quartz crystal microbalance sensor array coupled with principal component analysis. Sens Actuators A: physical 263:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Boualem Mettai
    • 1
    • 2
  • Ahmed Mekki
    • 2
  • Fateh Merdj
    • 2
  • Zakaria Bekkar Djelloul Sayah
  • Kouadri Moustefai Soumia
    • 1
  • Zitouni Safiddine
    • 2
  • Rachid Mahmoud
    • 2
  • Mohamed Mehdi Chehimi
    • 3
  1. 1.Laboratoire eau-environnementUniversité Hassiba Ben BoualiChlefAlgeria
  2. 2.Ecole Militaire PolytechniqueAlgerAlgeria
  3. 3.Université Paris Est, UMR 7182 CNRS, UPECThiaisFrance

Personalised recommendations