Highly refractive thiazole-containing polyimides: a structural property comparison

  • Ali Javadi
  • Abbas Shockravi
  • Fateme Ahmadi Shourkaei
  • Mehdi Koohgard
  • Ali Malek
ORIGINAL PAPER

Abstract

Highly refractive, thermally stable, and solution processable polyimides (PIs) were synthesized by the introduction of thiazole units, thioether linkages, and phenyl or nitrophenyl groups into the polymer backbones. These PIs were prepared via the polycondensation of two diamine monomers, 5,5′-thiobis(2-amino-4-phenyl-thiazole) (DA-1) or 5,5′-thiobis(2-amino-4-(3-nitrophenyl)thiazole) (DA-2), with various aromatic dianhydrides(a–d). The bulky pendant phenyl or nitrophenyl units as well as the non-coplanar conformations because of ortho-sulfide linkages endowed the resulting PIs with excellent solubility in organic solvents. These PIs showed outstanding thermal stability, with 10% weight loss temperatures exceeding 492 °C under nitrogen and 475 °C in air atmosphere, while their glass transition temperatures were in the range of 239–278 °C. In general, the synergic effects of thiazole groups, phenyl or nitrophenyl substituents, and thioether linkages provided PIs with very high refractive indices of up to 1.7646 at 632.8 nm, along with small birefringences (<0.0085) and high Abbe’s numbers. The structure–property relationships of the analogous PIs containing phenyl or nitrophenyl substituents groups were also studied in detail by comparing the results.

Keywords

Polyimide Thiazole Nitro Refractive index Birefringence Solubility 

Notes

Acknowledgements

This work was mainly supported by Kharazmi University. We are thankful to Prof. Shinji Ando (Tokyo Institute of Technology) for helpful discussions.

References

  1. 1.
    Krogman KC, Druffel T, Sunkara MK (2005) Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology 16(7):S338–S343CrossRefGoogle Scholar
  2. 2.
    Zhang G, Ren HH, Li DS, Long SR, Yang J (2013) Synthesis of highly refractive and transparent poly(arylene sulfide sulfone) based on 4,6-dichloropyrimidine and 3,6-dichloropyridazine. Polymer 54(2):601–606CrossRefGoogle Scholar
  3. 3.
    Seto R, Kojima T, Hosokawa K, Koyama Y, Konishi GI, Takata T (2010) Synthesis and property of 9,9′-spirobifluorene-containing aromatic polyesters as optical polymers with high refractive index and low birefringence. Polymer 51(21):4744–4749CrossRefGoogle Scholar
  4. 4.
    Liu J-g, Ueda M (2009) High refractive index polymers: fundamental research and practical applications. J Mater Chem 19(47):8907–8919CrossRefGoogle Scholar
  5. 5.
    Higashihara T, Ueda M (2015) Recent progress in high refractive index polymers. Macromolecules 48:1915–1929CrossRefGoogle Scholar
  6. 6.
    Born M, Wolf E (1999) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light7th edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Dean JA (1998) Lange's Handbook of Chemistry15th edn. McGraw-Hill, Inc., New YorkGoogle Scholar
  8. 8.
    Ando S, Fujigaya T, Ueda M (2002) Density functional theory calculations of Photoabsorption spectra in the vacuum ultraviolet region. Jpn J Appl Phys 41(2A):L105–L108CrossRefGoogle Scholar
  9. 9.
    Javadi A, Shockravi A, Rafieimanesh A, Malek A, Ando S (2015) Synthesis and structure–property relationships of novel thiazole-containing poly(amide imide)s with high refractive indices and low birefringences. Polym Int 64(4):486–495CrossRefGoogle Scholar
  10. 10.
    Javadi A, Shockravi A, Koohgard M, Malek A, Shourkaei FA, Ando S (2015) Nitro-substituted polyamides: a new class of transparent and highly refractive materials. Eur Polym J 66:328–341CrossRefGoogle Scholar
  11. 11.
    Shockravi A, Javadi A, Kamali M, Hajavi S (2012) Highly refractive and organo-soluble poly(amide imide)s based on 5,5′-thiobis(2-amino-4-methyl-thiazole): synthesis and characterization. J Appl Polym Sci 125(2):1521–1529CrossRefGoogle Scholar
  12. 12.
    Javadi A, Shockravi A, Kamali M, Rafieimanesh A, Malek AM (2013) Solution processable polyamides containing thiazole units and thioether linkages with high optical transparency, high refractive index, and low birefringence. J Polym Sci A Polym Chem 51(16):3505–3515CrossRefGoogle Scholar
  13. 13.
    Javadi A, Najjar Z, Bahadori S, Vatanpour V, Malek A, Abouzari-Lotf E, Shockravi A (2015) High refractive index and low-birefringence polyamides containing thiazole and naphthalene units. RSC Adv 5(111):91670–91682CrossRefGoogle Scholar
  14. 14.
    Zhang G, Li DS, Huang GS, Wang XJ, Long SR, Yang J (2011) Synthesis and properties of polyamides containing high contents of thioether units. React Funct Polym 71(8):775–781CrossRefGoogle Scholar
  15. 15.
    Liaw D-J, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974CrossRefGoogle Scholar
  16. 16.
    Dhara MG, Banerjee S (2010) Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci 35(8):1022–1077CrossRefGoogle Scholar
  17. 17.
    Chen Y-Y, Yang C-P, Hsiao S-H (2006) Novel organosoluble and colorless poly(ether imide)s based on 1,1-bis[4-(3,4-dicarboxyphenoxy)phenyl]cyclohexane dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. Eur Polym J 42(8):1705–1715CrossRefGoogle Scholar
  18. 18.
    Hou, Y., Chen G., Pei X., Fang X., (2012) Synthesis and characterization of novel optically transparent and organosoluble polyimides based on diamines containing cyclohexane moiety. J Polym Res 19(9).  https://doi.org/10.1007/s10965-012-9955-9
  19. 19.
    Shockravi A, Javadi A, Abouzari-Lotf E (2013) Binaphthyl-based macromolecules: a review. RSC Adv 3(19):6717–6746CrossRefGoogle Scholar
  20. 20.
    Hsiao S-H, Wang H-M, Chou J-S, Guo W, Lee T-M, Leu C-M, Su C-W (2012) Triptycene poly (ether-imide) s with high solubility and optical transparency.  J Polym Res 19(1):9757Google Scholar
  21. 21.
    Erol I, Sarkaya S (2012) Copolymers of methacrylic and styrenic monomer based on the naphthalene: synthesis, characterization, monomer reactivity ratios and thermal properties. J Polym Res 19(9):9957CrossRefGoogle Scholar
  22. 22.
    Zhao X, Li YF, Zhang SJ, Shao Y, Wang XL (2007) Synthesis and characterization of novel polyimides derived from 2-amino-5-[4-(4′-aminophenoxy)phenyl]-thiazole with some of dianhydride monomers. Polymer 48(18):5241–5249CrossRefGoogle Scholar
  23. 23.
    Abouzari-Lotf E, Shockravi A, Javadi A (2011) Heat-resistant and soluble fluorinated poly(amide imide)s based on non-coplanar ortho-linked diimide-dicarboxylic acid. Polym Degrad Stab 96(5):1022–1028CrossRefGoogle Scholar
  24. 24.
    Chen, G., Pei X., Liu J., Fang X. (2013) Synthesis and properties of transparent polyimides derived from trans- and cis-1,4-bis(3,4-dicarboxyphenoxy)cyclohexane dianhydrides. J Polym Res 20(6).  https://doi.org/10.1007/s10965-013-0159-8
  25. 25.
    Liaw D-J, Chang F-C, Leung M-K, Chou M-Y, Muellen K (2005) High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene−biphenyldiamine. Macromolecules 38(9):4024–4029CrossRefGoogle Scholar
  26. 26.
    Shockravi A, Abouzari-Lotf E, Javadi A, Atabaki F (2009) Preparation and properties of new ortho-linked polyamide-imides bearing ether, sulfur, and trifluoromethyl linkages. Eur Polym J 45(5):1599–1606CrossRefGoogle Scholar
  27. 27.
    Yi L, Li C, Huang W, Yan D (2014) Soluble aromatic polyimides with high glass transition temperature from benzidine containing tert-butyl groups. J Polym Res 21(11).  https://doi.org/10.1007/s10965-014-0572-7
  28. 28.
    Li C, Yi L, Xu S, Wu X, Huang W, Yan D (2017) Synthesis and characterization of polyimides from 4, 4′-(3-(tert-butyl)-4-aminophenoxy) diphenyl ether. J Polym Res 24(1):7Google Scholar
  29. 29.
    Jin J-I, Lee Y-H, Nam B-K (1995) Synthesis and characterization of poly (2-methoxy-5-(2-(4-nitrophenyl) ethenyl)-1, 4-phenylenevinylene) and a series of copolymers containing 1, 4-phenylenevinylene units. Polymer 36(1):193–200CrossRefGoogle Scholar
  30. 30.
    Rosenthal MV, Skotheim TA, Melo A, Florit MI, Salmon M (1985) Electrochemical synthesis of polypyrrole/poly-N-(p-nitrophenyl)pyrrole co-polymer. J Electroanal Chem Interfacial Electrochem 185(2):297–303CrossRefGoogle Scholar
  31. 31.
    Balcar H, Kalisz T, Sedláček J, Blechta V, Matějka P (1998) Polymerization of nitrophenyl propargyl ethers with transition metal catalysts and characterization of polymers. Polymer 39(18):4443–4447CrossRefGoogle Scholar
  32. 32.
    Castañón-Alonso SL, Morales-Saavedra OG, Báez-Pimiento S, Ortega-Martínez R, Rodríguez-Rosales AA, Hernández-Rojas ME (2012) Synthesis and overall nonlinear optical characterization of poly(hexa-2,4-diynylen-1,6-dioxydibenzoate) containing 2,2′-(4-((4-nitrophenyl)ethynyl)phenylazanediyl)diethanol. Mater Chem Phys 133(1):528–540CrossRefGoogle Scholar
  33. 33.
    Sharma GD, Mikroyannidis JA, Singh SP (2012) Photovoltaic properties of low band gap copolymers based on phenylenevinylene donor and cyanovinylene 4-nitrophenyl acceptor units. Org Electron 13(2):252–263CrossRefGoogle Scholar
  34. 34.
    Edler M, Mayrbrugger S, Fian A, Trimmel G, Radl S, Kern W, Griesser T (2013) Wavelength selective refractive index modulation in a ROMP derived polymer bearing phenyl- and ortho-nitrobenzyl ester groups. J Mater Chem C 1(25):3931–3938CrossRefGoogle Scholar
  35. 35.
    Boese D, Lee H, Yoon DY, Swalen JD, Rabolt JF (1992) Chain orientation and anisotropies in optical and dielectric properties in thin films of stiff polyimides. J Polym Sci B Polym Phys 30(12):1321–1327CrossRefGoogle Scholar
  36. 36.
    Liu J-g, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2007) Synthesis and characterization of high refractive index polyimides derived from 4,4[prime]-(p-Phenylenedisulfanyl)dianiline and various aromatic Tetracarboxylic Dianhydrides. Polym J 39(6):543–550CrossRefGoogle Scholar
  37. 37.
    Ando S (2006) DFT calculations on refractive index dispersion of fluoro-compounds in the DUV-UV-visible region. J Photopolym Sci Technol 19(3):351–360CrossRefGoogle Scholar
  38. 38.
    Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57CrossRefGoogle Scholar
  39. 39.
    Terui Y, Ando S (2005) Refractive indices and thermo-optic coefficients of aromatic polyimides containing sulfur atoms. J Photopolym Sci Technol 18(2):337–340CrossRefGoogle Scholar
  40. 40.
    Woodbridge RG, Dougherty G (1949) A novel Sulfidation reaction and its application to some 4-Substituted-2-aminothiazoles. J Am Chem Soc 71(5):1744–1745CrossRefGoogle Scholar
  41. 41.
    Ma H, Jen AKY, Dalton LR (2002) Polymer-based optical waveguides: materials, processing, and devices. Adv Mater 14(19):1339–1365CrossRefGoogle Scholar
  42. 42.
    Zhou M (2002) Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication. Opt Eng 41(7):1631–1643CrossRefGoogle Scholar
  43. 43.
    Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26(1):3–65CrossRefGoogle Scholar
  44. 44.
    Liu J-g, Nakamura Y, Suzuki Y, Shibasaki Y, Ando S, Ueda M (2007) Highly refractive and transparent polyimides derived from 4,4′-[m-Sulfonylbis(phenylenesulfanyl)]diphthalic anhydride and various sulfur-containing aromatic Diamines. Macromolecules 40(22):7902–7909CrossRefGoogle Scholar
  45. 45.
    Suzuki Y, Liu JG, Nakamura Y, Shibasaki Y, Ando S, Ueda M (2008) Synthesis of highly refractive and transparent polyimides derived from 4,4[prime]-[p-Sulfonylbis(phenylenesulfanyl)]diphthalic anhydride and various sulfur-containing aromatic Diamines. Polym J 40(5):414–420CrossRefGoogle Scholar
  46. 46.
    Ando S, Matsuura T, Sasaki S (1997) Coloration of aromatic polyimides and electronic properties of their source materials. Polym J 29(1):69–76CrossRefGoogle Scholar
  47. 47.
    Song Y, Wang J, Li G, Sun Q, Jian X, Teng J, Zhang H (2008) Synthesis, characterization and optical properties of fluorinated poly(aryl ether)s containing phthalazinone moieties. Polymer 49(23):4995–5001CrossRefGoogle Scholar
  48. 48.
    Okutsu R, Ando S, Ueda M (2008) Sulfur-containing poly(meth)acrylates with high refractive indices and high Abbe’s numbers. Chem Mater 20(12):4017–4023CrossRefGoogle Scholar
  49. 49.
    Okutsu R, Suzuki Y, Ando S, Ueda M (2008) Poly(thioether sulfone) with high refractive index and high Abbe’s number. Macromolecules 41(16):6165–6168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ali Javadi
    • 1
  • Abbas Shockravi
    • 2
  • Fateme Ahmadi Shourkaei
    • 2
  • Mehdi Koohgard
    • 3
  • Ali Malek
    • 4
  1. 1.Department of Polymer EngineeringThe University of AkronAkronUSA
  2. 2.Faculty of ChemistryKharazmi UniversityTehranIran
  3. 3.Department of ChemistryShiraz UniversityShirazIran
  4. 4.Department of ChemistrySimon Fraser UniversityBurnabyCanada

Personalised recommendations