Skip to main content
Log in

Investigation of the impact response of PMMA-based nano-rubbers under various temperatures

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To benefit from nano-rubber copolymers, the properties and dynamic behavior of nano-rubbers reinforced Poly(Methyl Methacrylate) (PMMA) were investigated. Dynamic tests were conducted on these materials at high strain rates and different temperatures using split Hopkinson pressure bars. The impact resistance of these materials was studied by performing low velocity impact tests with a drop weight tower at different impact energies and temperatures. The results showed decreased Young’s moduli and yield stresses. The mechanical behavior of the materials exhibited strain rate and temperature dependencies. Moreover, the nano-rubber-reinforced PMMA showed outstanding impact resistance compared with neat PMMA. The modified PMMA also exhibited impact properties similar to those of polycarbonate for certain ranges of impact energies and temperatures. No perforations were observed for all those energies and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schirrer R (2001) Section 6.12 - damage mechanisms in amorphous glassy polymers: crazing. In: Lemaitre J (ed) Handbook of materials behavior models. Academic, Burlington, pp 488–499

    Chapter  Google Scholar 

  2. Satapathy S, Bless S (2000) Deep punching PMMA. Exp Mech 40:31–37

    Article  Google Scholar 

  3. (2005) Arkema launches Nanostrength for advanced composite materials. Addit Polym 2005(6):3. https://doi.org/10.1016/S0306-3747(05)70387-0

  4. van der Sanden MCM, de Kok JMM, Meijer HEH (1994) Deformation and toughness of polymeric systems: 7. Influence of dispersed rubbery phase. Polymer 35:2995–3004

    Article  Google Scholar 

  5. Bagheri R, Pearson RA (1996) Role of particle cavitation in rubber-toughened epoxies: 1. Microvoid toughening. Polymer 37:4529–4538

    Article  CAS  Google Scholar 

  6. Hourston DJ, Lane JM (1992) The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends. Polymer 33:1379–1383

    Article  CAS  Google Scholar 

  7. Baniassadi M, Laachachi A, Hassouna F, Addiego F, Muller R, Garmestani H, Ahzi S, Toniazzo V, Ruch D (2011) Mechanical and thermal behavior of nanoclay based polymer nanocomposites using statistical homogenization approach. Compos Sci Technol 71:1930–1935

    Article  CAS  Google Scholar 

  8. Goyat MS, Ray S, Ghosh PK (2011) Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties. Compos A: Appl Sci Manuf 42:1421–1431

    Article  Google Scholar 

  9. Matadi Boumbimba R, Bouquey M, Muller R, Jourdainne L, Triki B, Hébraud P, Pfeiffer P (2012) Dispersion and morphology of polypropylene nanocomposites: characterization based on a compact and flexible optical sensor. Polym Test 31:800–809

    Article  CAS  Google Scholar 

  10. Basara C, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98:1081–1086

    Article  CAS  Google Scholar 

  11. Matadi Boumbimba R, Froustey C, Viot P, Olive JM, Léonardi F, Gerard P, Inoubli R (2014) Preparation and mechanical characterisation of laminate composites made of glass fibre/epoxy resin filled with tri bloc copolymers. Compos Struct 116:414–422

    Article  Google Scholar 

  12. Liu L, Wagner HD (2005) Rubbery and glassy epoxy resins reinforced with carbon nanotubes. Compos Sci Technol 65:1861–1868

    Article  CAS  Google Scholar 

  13. Hwang GL, Hwang KC (2001) Breakage, fusion, and healing of carbon nanotubes. Nano Lett 1:435–438

    Article  CAS  Google Scholar 

  14. Varela-Rizo H, Weisenberger M, Bortz DR, Martin-Gullon I (2010) Fracture toughness and creep performance of PMMA composites containing micro and nanosized carbon filaments. Compos Sci Technol 70:1189–1195

    Article  CAS  Google Scholar 

  15. Liu J, Rasheed A, Minus ML, Kumar S (2009) Processing and properties of carbon nanotube/poly(methyl methacrylate) composite films. J Appl Polym Sci 112:142–156

    Article  CAS  Google Scholar 

  16. Bakshi SR, Singh V, Graham D, McCartney SS, Agarwal A (2008) Deformation and damage mechanisms of multiwalled carbon nanotubes under high-velocity impact. Scr Mater 59:499–502

    Article  CAS  Google Scholar 

  17. Feng J, Hao J, Du J, Yang R (2012) Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol a bis(diphenyl phosphate) and montmorillonite. Polym Degrad Stab 97:605–614

    Article  CAS  Google Scholar 

  18. Chehata N, Ltaief A, Bkakri R, Bouazizi A (2014) Optical and electrical properties of conducting polymer-functionalized carbon nanotubes nanocomposites. Mater Sci Semicond Process 22:7–15

    Article  CAS  Google Scholar 

  19. Tran TA, Leonardi F, Bourrigaud S, Gerard P, Derail C (2008) All acrylic block copolymers based on poly (methyl methacrylate) and poly (butyl acrylate). A link between the physico-chemical properties and the mechanical behaviour on impact tests. Polym Test 27:945–950

    Article  CAS  Google Scholar 

  20. Lalande L, Plummer CJG, Månson J-AE, Gérard P (2006) Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers. Eng Fract Mech 73:2413–2426

    Article  Google Scholar 

  21. Rubin A, Rébutin N, Gérard P, Gauthier C (2014) Mechanical properties of a rubber-reinforced block copolymer PMMA: effect of the nanostructuration on tribological performances. Mater Lett 135:184–187

    Article  CAS  Google Scholar 

  22. Gerard P, Couvreur L, Magnet S, Ness J, Schmidt S (2009) Controlled architecture polymers at Arkema: synthesis, morphology and properties of all-acrylic block copolymers. In: Controlled/living radical polymerization: progress in RAFT, DT, NMP & OMRP American Chemical Society, pp 361–373

  23. Wang K, Boumbimba RM, Bahlouli N, Ahzi S, Muller R, Bouquey M (2012) Dynamic behaviour of a melt mixing polypropylene organoclay nanocomposites. J Eng Mater Technol 134:010905

    Article  Google Scholar 

  24. Wang K, Addiego F, Bahlouli N, Ahzi S, Rémond Y, Toniazzo V (2014) Impact response of recycled polypropylene-based composites under a wide range of temperature: effect of filler content and recycling. Compos Sci Technol 95:89–99

    Article  CAS  Google Scholar 

  25. Richeton J, Ahzi S, Daridon L, Rémond Y (2005) A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer 46:6035–6043

    Article  CAS  Google Scholar 

  26. Fotheringham D, Cherry BW, Bauwens-Crowet C (1976) Comment on "the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates". J Mater Sci 11:1368–1371

    Article  CAS  Google Scholar 

  27. Bauwens-Crowet C, Bauwens JC (1983) Effect of thermal history on the tensile yield stress of polycarbonate in the β transition range. Polymer 24:921–924

    Article  CAS  Google Scholar 

  28. Z. El-Qoubaa, R. Othman, Characterization and modeling of the strain rate sensitivity of polyetheretherketone’s compressive yield stress, Materials & Design, 66, Part A (2015) 336–345

  29. Ree T, Eyring H (1958) CHAPTER 3 - THE RELAXATION THEORY OF TRANSPORT PHENOMENA. In: Eirich FR (ed) Rheology. Academic Press, New York, pp 83–144

    Google Scholar 

  30. Matadi R, Gueguen O, Ahzi S, Gracio J, Muller R, Ruch D (2010) Investigation of the stiffness and yield behaviour of melt-intercalated poly(methyl methacrylate)/organoclay nanocomposites: characterisation and modelling. J Nanosci Nanotechnol 10:2956–2961

    Article  CAS  Google Scholar 

  31. Vecchio KS, Jiang F (2007) Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing. Metall Mater Trans A 38:2655–2665

    Article  Google Scholar 

  32. Brostow W (2009) Reliability and prediction of long-term performance of polymer-based materials. Pure Appl Chem 81:417

    Article  CAS  Google Scholar 

  33. Rusinek A, Bernier R, Boumbimba RM, Klosak M, Jankowiak T, Voyiadjis GZ (2018) New devices to capture the temperature effect under dynamic compression and impact perforation of polymers, application to PMMA. Polym Test 65:1–9

    Article  CAS  Google Scholar 

  34. Pawlak A, Galeski A, Rozanski A (2014) Cavitation during deformation of semicrystalline polymers. Prog Polym Sci 39:921–958

    Article  CAS  Google Scholar 

  35. Lalande L, Plummer CJG, Månson J-AE, Gérard P (2006) The influence of matrix modification on fracture mechanisms in rubber toughened polymethylmethacrylate. Polymer 47:2389–2401

    Article  CAS  Google Scholar 

  36. Matadi Boumbimba R, Froustey C, Viot P, Gerard P (2015) Low velocity impact response and damage of laminate composite glass fibre/epoxy based tri-block copolymer. Compos Part B 76:332–342

    Article  CAS  Google Scholar 

  37. Bashar MT, Sundararaj U, Mertiny P (2013) Mode-I interlaminar fracture behaviour of nanoparticle modified epoxy/basalt fibre-reinforced laminates. Polym Test 32:402–412

    Article  CAS  Google Scholar 

  38. Wu J, Thio YS, Bates FS (2005) Structure and properties of PBO–PEO diblock copolymer modified epoxy. J Polym Sci B Polym Phys 43:1950–1965

    Article  CAS  Google Scholar 

  39. Yang X, Yi F, Xin Z, Zheng S (2009) Morphology and mechanical properties of nanostructured blends of epoxy resin with poly(ɛ-caprolactone)-block-poly(butadiene-co-acrylonitrile)-block-poly(ɛ-caprolactone) triblock copolymer. Polymer 50:4089–4100

    Article  CAS  Google Scholar 

  40. Bashar M, Sundararaj U, Mertiny P (2011) Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures. Express Polym Lett 5:882–896

    Article  CAS  Google Scholar 

  41. Inberg JPF, Gaymans RJ (2002) Polycarbonate and co-continuous polycarbonate/ABS blends: influence of notch radius. Polymer 43:4197–4205

    Article  CAS  Google Scholar 

  42. Shah QH (2009) Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts. Int J Impact Eng 36:1128–1135

    Article  Google Scholar 

  43. Xu Y, Lu H, Gao T, Zhang W (2015) Predicting the low-velocity impact behavior of polycarbonate: influence of thermal history during injection molding. Int J Impact Eng 86:265–273

    Article  Google Scholar 

  44. Cheng S-K, Chen C-Y (2004) Mechanical properties and strain-rate effect of EVA/PMMA in situ polymerization blends. Eur Polym J 40:1239–1248

    Article  CAS  Google Scholar 

  45. Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26:1855–1863

    Article  CAS  Google Scholar 

  46. Park JH, Jana SC (2003) The relationship between nano- and micro-structures and mechanical properties in PMMA–epoxy–nanoclay composites. Polymer 44:2091–2100

    Article  CAS  Google Scholar 

  47. Tiwari RR, Natarajan U (2008) Thermal and mechanical properties of melt processed intercalated poly(methyl methacrylate)–organoclay nanocomposites over a wide range of filler loading. Polym Int 57:738–743

    Article  CAS  Google Scholar 

  48. Fischer B, Ziadeh M, Pfaff A, Breu J, Altstädt V (2012) Impact of large aspect ratio, shear-stiff, mica-like clay on mechanical behaviour of PMMA/clay nanocomposites. Polymer 53:3230–3237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been carried out in collaboration with ARKEMA research team of Lacq (France). We also thank Mr. Adoté Situ BLIVI for his help and his availability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Matadi Boumbimba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matadi Boumbimba, R., Coulibaly, M., Peng, Y. et al. Investigation of the impact response of PMMA-based nano-rubbers under various temperatures. J Polym Res 25, 76 (2018). https://doi.org/10.1007/s10965-018-1479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1479-5

Keywords

Navigation