Advertisement

Binary mixed micellar systems of PEO-PPO-PEO block copolymers for lamotrigine solubilization: a comparative study with hydrophobic and hydrophilic copolymer

  • Rakesh K. Sharma
  • Sofiya Shaikh
  • Debes Ray
  • Vinod K. Aswal
ORIGINAL PAPER
  • 140 Downloads

Abstract

Polyethyelene oxide-polypropylene oxide-polyethyelene oxide, PEO-PPO-PEO triblock copolymers, Pluronics® are considered to be the best nanocarrier for hydrophobic substances on account of their wonderful solubilization power over other ionic and non-ionic surfactants. In the present manuscript, the Pluronic® binary mixtures (two systems, F127/P123 and F127/L35) as micellar nanocarriers for solubilization of lamotrigine (LTG) drug were investigated through UV-Visible spectroscopy, dynamic light scattering (DLS) and small angle neutron scattering (SANS) analysis. Both the binary systems form stable mixed micelles had low CMC in water. The CMC of binary systems, F127/P123 was located in the middle of the CMC of each copolymer, but it was slightly increased in the F127/L35 mixed systems. Results of DLS and SANS data were proven the spherical shape of micelles for both the binary systems with less than 30-nm diameter in sizes. Not much but mixed micelle became slightly larger after solubilizing of LTG drug. The solubilization capacity (SCP) of the binary systems was monitored using UV-Visible spectroscopy. The F127/P123 system shows relatively high solubilization capacity (SCP) due to a more hydrophobic system as copolymers with similar PPO block lengths. The F127/L35 system has been given the low SCP because of hydrophilic nature of L35. The micellar water partition coefficient (P) and Gibbs free energy changes (ΔG°) of solubilized LTG drug were also evaluated from a thermodynamics viewpoint. In conclusion, these binary micellar systems may be considered as the effective nanocarriers for LTG drug and F127/P123 mixed micelles proven better than the F127/L35 system for LTG drug.

Keywords

Pluronic block copolymers UV-visible spectroscopy Mixed micelles Lamotrigine Solubilization 

Notes

Acknowledgements

This work was supported by UGC-DAE Research Project (CRS-M-205), Bhabha Atomic Research Centre, Mumbai, Maharashtra, India. The corresponding author also acknowledged to Prof.R.C.Tandel, Head of Applied Chemistry Department for his kind help throughout the work.

Supplementary material

10965_2018_1473_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 65 kb)

References

  1. 1.
    Kamaly N, Xiao Z, Valencia PM, Radovic-Morenob AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010CrossRefGoogle Scholar
  2. 2.
    Eisenberg A, Allen C, Maysingar D (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B: Biointerfaces 16:3–27CrossRefGoogle Scholar
  3. 3.
    Mao S, Tian Y (2012) Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert Opin Drug Deliv 9(6):687–700CrossRefGoogle Scholar
  4. 4.
    Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131CrossRefGoogle Scholar
  5. 5.
    Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142CrossRefGoogle Scholar
  6. 6.
    Xiong XB, Falamarzian A, Garg SM, Lavasanifar A (2011) Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 155(2):248–261CrossRefGoogle Scholar
  7. 7.
    Alexandridis P (1997) Poly (ethylene oxide)/poly (propylene oxide) block copolymer surfactants. Curr Opin Colloid Interface Sci 2:478–489CrossRefGoogle Scholar
  8. 8.
    Riess G, Hurtrez G, Bahadur P (1985) Block copolymers, 2nd ed. Ency Poly Sci Eng. Wiley, New York 2:324–334Google Scholar
  9. 9.
    Bahadur P (2001) Block copolymers–their microdomain formation (in solid state) and surfactant behaviour (in solution). Curr Sci 80:1002–1007Google Scholar
  10. 10.
    Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRefGoogle Scholar
  11. 11.
    Linse P, Malmsten M (1994) Temperature-dependent micellization in aqueous block copolymer solutions. Macromolecules 25:5434–5439CrossRefGoogle Scholar
  12. 12.
    Elluru M, Ma H, Hadjiargyrou M, Hsiao BS, Chu B (2013) Synthesis and characterization of the biocompatible hydrogel using Pluronics-based block copolymers. Polymer 54(8):2088–2095CrossRefGoogle Scholar
  13. 13.
    Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170CrossRefGoogle Scholar
  14. 14.
    Chaibundit C, Ricardo NMPS, Costa FDMLL, Yeates SG, Booth C (2007) Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir 23(18):9229–9236CrossRefGoogle Scholar
  15. 15.
    Zhang W, Shi Y, Chen Y, Ye J, Sha X, Fang X (2011) Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug-resistant tumors. Biomaterials 32(11):2894–2906CrossRefGoogle Scholar
  16. 16.
    Lee ES, Oh YT, Youn YS, Nam M, Park B, Yun J, Kim JH, Song HT, Oh KT (2011) Binary mixing of micelles using pluronics for a nano-sized drug delivery system. Colloids Surf B: Biointerfaces 82(1):190–195CrossRefGoogle Scholar
  17. 17.
    Barry NPE, Barry AP (2014) Pluronic®block-copolymers in medicine: from chemical and biological versatility to rationalization and clinical advances. Polym Chem 5:3291–3297CrossRefGoogle Scholar
  18. 18.
    Batrakova EV, Kabanov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 130(2):98–106CrossRefGoogle Scholar
  19. 19.
    Chiappetta DA, Sosnik A (2007) Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydro solubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66(3):303–317CrossRefGoogle Scholar
  20. 20.
    Sezgin Z, Yuksel N, Baykara T (2006) Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm 64(3):261–268CrossRefGoogle Scholar
  21. 21.
    Zhang M, Djabourov M, Bourgaux C, Bouchemal K (2013) Nanostructured fluids from Pluronic® mixtures. Int J Pharm 454(2):599–610CrossRefGoogle Scholar
  22. 22.
    Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, Fang X (2009) Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm 376(1):176–185CrossRefGoogle Scholar
  23. 23.
    Oh KT, Bronich TK, Kabanov AV (2004) Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. J Control Release 94(2–3):411–422CrossRefGoogle Scholar
  24. 24.
    Antunes FE, Gentile L, Rossi CO, Tavano L, Ranieri GA (2011) Gels of Pluronic F127 and nonionic surfactants from rheological characterization to controlled drug permeation. Colloids Surf B: Biointerfaces 87:42–48CrossRefGoogle Scholar
  25. 25.
    Manosroi A, Jantrawuta P, Manosroi J (2008) Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethyl ammonium. Int J Pharm 360:156–163CrossRefGoogle Scholar
  26. 26.
    Grassi G, Crevatin A, Farra R, Guarnieri G, Pascotto A, Rehimers B, Lapasin R, Grassi M (2006) Rheological properties of aqueous Pluronic–alginate systems containing liposomes. J Colloid Interface Sci 301:282–290CrossRefGoogle Scholar
  27. 27.
    Sharma PK, Bhatia SR (2004) Effect of anti-inflammatories on Pluronic F127: micellar assembly, gelation and partitioning. Int J Pharm 278(2):361–377CrossRefGoogle Scholar
  28. 28.
    Sharma PK, Reilly MJ, Jones DN, Robinson PM, Bhatia SR (2008) The effects of anti-pharmaceuticals on the nanoscale structure of PEO-PPO-PEO micelles. Colloids Surf B: Biointerfaces 61:53–60CrossRefGoogle Scholar
  29. 29.
    Scherlund M, Brodin A, Malmsten M (2000) Micellization and gelation in block copolymer systems containing local anesthetics. Int J Pharm 211:37–49CrossRefGoogle Scholar
  30. 30.
    Li X, Yu Y, Ji Q, Qiu L (2015) Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomedicine 11:175–184CrossRefGoogle Scholar
  31. 31.
    Liu Y, Zhang J (2015) Influence of pore symmetries on the supercapacitive performance of mesoporous carbons co-templated by F127 and PDMS–PEO. Microporous Mesoporous Mater 206:81–85CrossRefGoogle Scholar
  32. 32.
    Kerkhof S, Willhammar T, Noortgate HVD, Kirschhock CEA, Breynaert E, Tendeloo GV, Bals S, Martens JA (2015) Self-assembly of Pluronic F127® silica spherical core-shell nanoparticles in cubic close-packed structures. Chem Mater 27:5161–5169CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Lam Y (2007) Controlled synthesis and association behavior of graft Pluronic in aqueous solutions. J Colloid Interface Sci 306:398–404CrossRefGoogle Scholar
  34. 34.
    Dutra LMU, Ribeiro MENP, Cavalcante IM, Brito DHAD, Semiao LDM, Silva RFD, Fechine PBA, Yeates SG, Ricardo NMPS (2015) Binary mixture micellar systems of F127 and P123 for griseofulvin solubilization. Polimeros 25(5):433–439Google Scholar
  35. 35.
    Perucca E (1996) The new generation of antiepileptic drugs: advantages and disadvantages. Br J Clin Pharmacol 42:531–533CrossRefGoogle Scholar
  36. 36.
    Perucca E (2001) The clinical pharmacology and therapeutic use of the new antiepileptic drugs. Fundam Clin Pharmacol 15:405–407CrossRefGoogle Scholar
  37. 37.
    Chong E, Dupuis L (2002) Therapeutic drug monitoring of lamotrigine. Ann Pharmacother 36(5):917–920CrossRefGoogle Scholar
  38. 38.
    Ray GB, Chakraborty I, Moulik SP (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (CMC) and indexing micellar polarity. J Colloid Interface Sci 294:248–254CrossRefGoogle Scholar
  39. 39.
    Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3(1):139–162CrossRefGoogle Scholar
  40. 40.
    Aswal VK, Goyal PS (2000) Small-angle neutron scattering diffractometer at Dhruva reactor. Curr Sci 79(7):947–953Google Scholar
  41. 41.
    Jindal N, Mehta SK (2015) Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B: Biointerfaces 129:100–106CrossRefGoogle Scholar
  42. 42.
    Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82(2):189–212CrossRefGoogle Scholar
  43. 43.
    Attwood D, Booth C, Tadros C, Tadros F (ed) (2007) Colloid stability and application in pharmacy. Wiley, Weinheim, pp 61–78Google Scholar
  44. 44.
    Attwood D, Booth C, Yeates SG, Chaibundit C, Ricardo NMPS (2007) Block copolymers for drug solubilisation: relative hydrophobicities of polyether and polyester micelle-core-forming blocks. Int J Pharm 345(1–2):35–41CrossRefGoogle Scholar
  45. 45.
    Gaisford S, Beezer A, Mitchell JC (1997) Diode-array UV spectrometric evidence for cooperative interactions in binary mixtures of pluronics F77, F87, and F127. Langmuir 13(10):2606–2607CrossRefGoogle Scholar
  46. 46.
    Lazzara G, Milioto S, Gradzielski M (2006) The solubilisation behaviour of some dichloroalkanes in aqueous solutions of PEO-PPO-PEO triblock copolymers: a dynamic light scattering, fluorescence spectroscopy, and SANS study. Phys Chem Chem Phys 8:2299–2312CrossRefGoogle Scholar
  47. 47.
    Yunqi L, Tongfei S, Zhaoyan S, Lijia A, Qingrong H (2006) Investigation of sol-gel transition in Pluronic F127/D2O solutions using a combination of small-angle neutron scattering and Monte Carlo simulation. J Phys Chem B 110:26424–26429CrossRefGoogle Scholar
  48. 48.
    Dehvari K, Lin KS, Hammouda B (2017) Small-angle neutron scattering studies of microenvironmental and structural changes of Pluronic micelles upon encapsulation of paclitaxel. J Taiwan Inst Chem Eng 71:405–413CrossRefGoogle Scholar
  49. 49.
    Sharma RK, Shaikh S, Ray D, Aswal VK (2017) Incorporation of lamotrigine drug in the PEO-PPO-PEO triblock copolymer(Pluronic F127) micelles: effect of hydrophilic polymers. J Surfactant Deterg 20:695–706CrossRefGoogle Scholar
  50. 50.
    Batrakova EV, Dorodnych TY, Klinskii EY, Kliushnenkova E, Shemchukova O, Goncharova O, Arjakov S, Alakhov VY, Kabanov AV (1996) Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 74:1545CrossRefGoogle Scholar
  51. 51.
    Zhaia Y, Guo S, Liu C, Yang C, Dou J, Li L, Zhai G (2013) Preparation and in vitro evaluation of apigenin-loaded polymeric micelles. Colloids Surf A Physicochem Eng Asp 429:24–30CrossRefGoogle Scholar
  52. 52.
    Zhao L, Dul L, Duan Y, Zang Y, Zhang H, Yang C, Cao F, Zhai G (2012) Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B: Biointerfaces 97:101–108CrossRefGoogle Scholar
  53. 53.
    Forster D, Washington C, Davis S (1988) Toxicity of solubilized and colloidal amphotericin B formulations to human erythrocytes. J Pharm Pharmacol 40:325–328CrossRefGoogle Scholar
  54. 54.
    Kadam Y, Yerramilli U, Bahadur A, Bahadur P (2011) Micelles from PEO–PPO–PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloids Surf B: Biointerfaces 83(1):49–57CrossRefGoogle Scholar
  55. 55.
    Rekatas CJ, Mai SM, Crothers M, Quinn M, Collett JH, Attwood D, Heatley F, Martini L, Booth C (2001) The effect of hydrophobe chemical structure and chain length on the solubilization of griseofulvin in aqueous micellar solutions of block copoly(oxyalkylene)s. Phys Chem Chem Phys 3(21):4769–4773CrossRefGoogle Scholar
  56. 56.
    Ribeiro MENP, Moura CL, Vieira MGS, Gramosa NV, Chaibundit C, Mattos MC, Attwood D, Yeates SG, Nixon SK, Ricardo NMPS (2012) Solubilisation capacity of Brij surfactants. Int J Pharm 436(1–2):631–635CrossRefGoogle Scholar
  57. 57.
    Crothers M, Zhou Z, Ricardo NM, Yang Z, Taboada P, Chaibundit C, Attwood D, Booth C (2005) Solubilisation in aqueous micellar solutions of block copoly(oxyalkylene)s. Int J Pharm 293(1):91–100CrossRefGoogle Scholar
  58. 58.
    Kadam Y, Yerramilli U, Bahadur A (2009) Solubilization of poorly water-soluble drug carbamezapine in Pluronic® micelles: effect of molecular characteristics, temperature and added salt on the solubilizing capacity. Colloids Surf B: Biointerfaces 72(1):141–147CrossRefGoogle Scholar
  59. 59.
    Kulthe SS, Inamdar NN, Choudhari YM, Shirolikar SM, Borde LC, Mourya VK (2011) Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids Surf B: Biointerfaces 88(2):691–696CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rakesh K. Sharma
    • 1
  • Sofiya Shaikh
    • 1
  • Debes Ray
    • 2
  • Vinod K. Aswal
    • 2
  1. 1.Applied Chemistry Department, Faculty of Technology and EngineeringThe M. S. University of BarodaVadodaraIndia
  2. 2.Solid State Physics DivisionBhabha Atomic Research Center (B.A.R.C.)MumbaiIndia

Personalised recommendations