Advertisement

Effect of multiwalled carbon nanotubes and phenethyl-bridged DOPO derivative on flame retardancy of epoxy resin

  • Wei Yan
  • Jie Yu
  • Mingqiu Zhang
  • Tao Wang
  • Chunzhi Wen
  • Shuhao Qin
  • Weijiang Huang
ORIGINAL PAPER
  • 222 Downloads

Abstract

In this study, a phenethyl-bridged DOPO derivative (DiDOPO) was combined with multi-walled carbon nanotubes (MWNT) in epoxy resin (EP) to improve its flame retardancy. The introduction of only 10 wt% DiDOPO/0.8 wt% MWNT into EP increased the limited oxygen index (LOI) from 21.8% to 38.6%, achieving the UL 94 V-0 rating. The thermogravimetric analyses demonstrated that the presence of MWNT raised the char yield and formed thermally stable carbonaceous char. The decomposition and pyrolysis products in the gas phase were characterized by thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and found large amounts of phosphorus released into the gas phase. The flame-retardant effect evaluation by cone calorimetry testified that the MWNT improved the protective-barrier effect of the fire residue of EP/DiDOPO/MWNT, as shown by digital photo and scanning electron microscopy (SEM). Raman showed that MWNT could enhance the graphitization degree of the resin during combustion. Overall, these findings indicated that combination of DiDOPO with MWNT is an effective way in developing high-performance resins with attractive flame retardancy.

Keywords

Epoxy resin DiDOPO MWNT Flame retardancy 

Notes

Acknowledgements

This work was supported by the Guizhou Science and Technology Cooperation Project (20157304) and the Natural Science Foundation of Education Department of Guizhou Province (2015400).

References

  1. 1.
    Martins MSS, Schartel B, Magalhães FD, Pereira CMC (2016) The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater 301:9–35Google Scholar
  2. 2.
    Zhang X, He Q, Gu H, Colorado HA, Wei S, Guo Z (2013) Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl Mater Interfaces 5(3):898–910CrossRefGoogle Scholar
  3. 3.
    Rakotomalala M, Wagner S, Döring M (2010) Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications. Materials 3(8):4300–4327CrossRefGoogle Scholar
  4. 4.
    Zhuang R-C, Yang J, Wang D-Y, Huang Y-X (2015) Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Adv 5(121):100049–100053CrossRefGoogle Scholar
  5. 5.
    Wang X, Kalali EN, Wang D-Y (2015) Renewable Cardanol-Based Surfactant Modified Layered Double Hydroxide as a Flame Retardant for Epoxy Resin. ACS Sustain Chem Eng 3(12):3281–3290CrossRefGoogle Scholar
  6. 6.
    Zotti A, Borriello A, Ricciardi M, Antonucci V, Giordano M, Zarrelli M (2015) Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy. Compos Part B 73:139–148CrossRefGoogle Scholar
  7. 7.
    Deng L, Shen M, Yu J, Wu K, Ha C (2012) Preparation, Characterization, and Flame Retardancy of Novel Rosin-Based Siloxane Epoxy Resins. Ind Eng Chem Res 51(24):8178–8184CrossRefGoogle Scholar
  8. 8.
    Liu S, Fang Z, Yan H, Chevali VS, Wang H (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos A: Appl Sci Manuf 89:26–32CrossRefGoogle Scholar
  9. 9.
    Zang L, Wagner S, Ciesielski M, Müller P, Döring M (2011) Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym Adv Technol 22(7):1182–1191CrossRefGoogle Scholar
  10. 10.
    Long L, Yin J, He W, Qin S, Yu J (2016) Influence of a Phenethyl-Bridged DOPO Derivative on the Flame Retardancy, Thermal Properties, and Mechanical Properties of Poly(lactic acid). Ind Eng Chem Res 55(40):10803–10812CrossRefGoogle Scholar
  11. 11.
    Chang Q, Long L, He W, Qin S, Yu J (2016) Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim Acta 639:84–90CrossRefGoogle Scholar
  12. 12.
    Shree Meenakshi K, Pradeep Jaya Sudhan E, Ananda Kumar S, Umapathy MJ (2011) Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog Org Coat 72(3):402–409CrossRefGoogle Scholar
  13. 13.
    Zhang W, Li X, Yang R (2012) Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym Degrad Stab 97(8):1314–1324CrossRefGoogle Scholar
  14. 14.
    Wang T, Wang J, Huo S, Zhang B, Yang S (2016) Preparation and flame retardancy of DOPO–based epoxy resin containing bismaleimide. High Perform Polym 28(9):1090–1095CrossRefGoogle Scholar
  15. 15.
    Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 35(7):902–958CrossRefGoogle Scholar
  16. 16.
    Martino L, Guigo N, van Berkel JG, Sbirrazzuoli N (2017) Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos Part B 110:96–105CrossRefGoogle Scholar
  17. 17.
    Yang S, Wang J, Huo S, Wang M, Wang J, Zhang B (2016) Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: Strong bonding of different carbon residues. Polym Degrad Stab 128:89–98CrossRefGoogle Scholar
  18. 18.
    Liu S, Chevali VS, Xu Z, Hui D, Wang H (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos Part B 136:197–214CrossRefGoogle Scholar
  19. 19.
    Du B, Fang Z (2010) The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology 21(31):315603–315609CrossRefGoogle Scholar
  20. 20.
    Song PA, Xu L, Guo Z, Zhang Y, Fang Z (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18(42):5083–5091CrossRefGoogle Scholar
  21. 21.
    Ma H-Y, Tong L-F, Xu Z-B, Fang Z-P (2008) Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant: Nanocomposite Synthesis, Morphology, Rheology, and Flammability. Adv Funct Mater 18(3):414–421CrossRefGoogle Scholar
  22. 22.
    Ma Y-Y, Ma P-F, Ma Y-J, Xu D, Wang P, Yang R (2017) Synergistic effect of multiwalled carbon nanotubes and an intumescent flame retardant: Toward an ideal electromagnetic interference shielding material with excellent flame retardancy. J Appl Polym Sci 134:45088–45094CrossRefGoogle Scholar
  23. 23.
    Rahatekar SS, Zammarano M, Matko S, Koziol KK, Windle AH, Nyden M, Kashiwagi T, Gilman JW (2010) Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym Degrad Stab 95(5):870–879CrossRefGoogle Scholar
  24. 24.
    Kuan C-F, Chen W-J, Li Y-L, Chen C-H, Kuan H-C, Chiang C-L (2010) Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol–gel method. J Phys Chem Solids 71(4):539–543CrossRefGoogle Scholar
  25. 25.
    Hesamir M, Bagheri R, Masoomi M (2014) Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites. Iran Polym J 23(6):469–476CrossRefGoogle Scholar
  26. 26.
    Yao Q, Wang J, Mack AG. (2015) Process for the preparation of DOPO-derived compounds and compositions thereof. U.S. Patent 9,012,546,Google Scholar
  27. 27.
    Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51(11):2435–2445CrossRefGoogle Scholar
  28. 28.
    Kashiwagi T, Du F, Douglas JF, Winey KI, Harris Jr RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4(12):928–933CrossRefGoogle Scholar
  29. 29.
    Qiu Y, Qian L, Xi W (2016) Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv 6(61):56018–56027CrossRefGoogle Scholar
  30. 30.
    Buczko A, Stelzig T, Bommer L, Rentsch D, Heneczkowski M, Gaan S (2014) Bridged DOPO derivatives as flame retardants for PA6. Polym Degrad Stab 107:158–165CrossRefGoogle Scholar
  31. 31.
    Wang J, Qian L, Huang Z, Fang Y, Qiu Y (2016) Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym Degrad Stab 130:173–181CrossRefGoogle Scholar
  32. 32.
    Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M (2011) Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym Degrad Stab 96(5):875–884CrossRefGoogle Scholar
  33. 33.
    Tang S, Wachtendorf V, Klack P, Qian L, Dong Y, Schartel B (2017) Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset. RSC Adv 7(2):720–728CrossRefGoogle Scholar
  34. 34.
    Brehme S, Köppl T, Schartel B, Altstädt V (2014) Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. e-Polymers 14(3):193–208Google Scholar
  35. 35.
    Wu GM, Schartel B, Bahr H, Kleemeier M, Yu D, Hartwig A (2012) Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Combust Flame 159(12):3616–3623CrossRefGoogle Scholar
  36. 36.
    Chen X, Liu L, Zhuo J, Jiao C, Qian Y (2014) Influence of organic-modified iron–montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. High Perform Polym 27(2):233–246CrossRefGoogle Scholar
  37. 37.
    Schartel B, Weiß A, Sturm H, Kleemeier M, Hartwig A, Vogt C, Fischer RX (2011) Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer. Polym Adv Technol 22(12):1581–1592CrossRefGoogle Scholar
  38. 38.
    Xu W, Wirasaputra A, Liu S, Yuan Y, Zhao J (2015) Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym Degrad Stab 122:44–51CrossRefGoogle Scholar
  39. 39.
    Wang Z, Wu W, Zhang X, Wang J, Liu B (2015) Effects of silane-modified multiwalled carbon nanotubes and 9,10-dihydro-9-oxa-10 phosphaphenanthrene-10-oxide on the flame retardancy and mechanical properties of bismaleimide resin. High Perform Polym 28(7):831–841CrossRefGoogle Scholar
  40. 40.
    Schartel B, Perret B, Dittrich B, Ciesielski M, Krämer J, Müller P, Altstädt V, Zang L, Döring M (2016) Flame Retardancy of Polymers: The Role of Specific Reactions in the Condensed Phase. Macromol Mater Eng 301(1):9–35CrossRefGoogle Scholar
  41. 41.
    Brehme S, Köppl T, Schartel B, Fischer O, Altstädt V, Pospiech D, Döring M (2012) Phosphorus Polyester - an Alternative to Low-Molecular-Weight Flame Retardants in Poly(Butylene Terephthalate)? Macromol Chem Phys 213(22):2386–2397CrossRefGoogle Scholar
  42. 42.
    Perret B, Schartel B, Stöß K, Ciesielski M, Diederichs J, Döring M, Krämer J, Altstädt V (2011) A New Halogen-Free Flame Retardant Based on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for Epoxy Resins and their Carbon Fiber Composites for the Automotive and Aviation Industries. Macromol Mater Eng 296(1):14–30CrossRefGoogle Scholar
  43. 43.
    Qian X, Song L, Yu B, Wang B, Yuan B, Shi Y, Hu Y, Yuen RKK (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1(23):6822–6830CrossRefGoogle Scholar
  44. 44.
    Wang X, Hu Y, Song L, Xing W, Lu H (2011) Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J Anal Appl Pyrolysis 92(1):164–170CrossRefGoogle Scholar
  45. 45.
    Zhang W, Li X, Li L, Yang R (2012) Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym Degrad Stab 97(6):1041–1048CrossRefGoogle Scholar
  46. 46.
    Li Z, Yang R (2014) Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polym Degrad Stab 109:233–239CrossRefGoogle Scholar
  47. 47.
    Wawrzyn E, Schartel B, Seefeldt H, Karrasch A, Jäger C (2012) What Reacts with What in Bisphenol A Polycarbonate/Silicon Rubber/Bisphenol A Bis(diphenyl phosphate) during Pyrolysis and Fire Behavior? Ind Eng Chem Res 51(3):1244–1255CrossRefGoogle Scholar
  48. 48.
    Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, Döring M, Perez R, Sandler JKW, Altstädt V, Hoffmann T, Pospiech D (2007) Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J Appl Polym Sci 104(4):2260–2269CrossRefGoogle Scholar
  49. 49.
    Tuinstra F, Koenig JL (1970) Raman Spectrum of Graphite. J Chem Phys 53(3):1126–1130CrossRefGoogle Scholar
  50. 50.
    Tuinstra F, Koenig JL (1970) Characterization of Graphite Fiber Surfaces with Raman Spectroscopy. J Compos Mater 4(4):492–499CrossRefGoogle Scholar
  51. 51.
    Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Materials EngineeringGuiyang UniversityGuiyangPeople’s Republic of China
  2. 2.National Engineering Research Center for Compounding and Modification of Polymer MaterialsGuiyangPeople’s Republic of China
  3. 3.School of ChemistrySun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations