Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide

  • Shengchang Zhang
  • Pengqing Liu
  • Xiangsen Zhao
  • Jianjun Xu


Poly(vinyl alcohol)-grafted Graphene oxide (PVA-g-GO) as novel nanofillers were used to reinforce poly(vinyl alcohol) (PVA) composite fibers via simple wet spinning to promote homogeneous dispersion of reinforcing nanofillers as well as strengthen interfacial adhesion between nanofillers and matrix. Then the impact of these PVA chains grafted above GO sheets on the compatibility and dispersion of PVA-g-GO sheets in PVA fiber, the interfacial adhesion between nanofillers and matrix and the structure as well as property of PVA-g-GO/PVA fibers were studied systematically via characterizing morphology, aggregation structure and mechanical property of these composite fibers. These results showed that not only well dispersion and compatibility of PVA-g-GO sheets in composite fibers could be achieved, but also obvious enhancement in interfacial adhesion between nanofillers and matrix. Meanwhile, significant reinforcement in tensile strength and initial modulus of these composite fibers could also be obtained. Compared with neat PVA drawn fiber, tensile strength and initial modulus of these composite drawn fibers could increase by 39% and 69% with addition of 0.60 wt% of PVA-g-GO sheets, respectively. On the one hand, crystallization and orientation degree of these composite fibers could be improved because of the template-oriented effect of PVA-g-GO sheets during hot drawing. On the other hand, efficient load transfer between matrix and nanofillers in composite drawn fibers could be achieved easily because of the strong interfacial adhesion between nanofillers and matrix. These were also two main reasons for the obvious improvement in tensile strength and initial modulus of composite drawn fibers.


Functionalized graphene oxide Poly(vinyl alcohol) fibers Mechanical properties Crystallization and orientation Interfacial adhesion 



The financial support of Science & Technology Support Program of Sichuan Province with grant No.2016GZ0376 is gratefully acknowledged.


  1. 1.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes--the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  2. 2.
    Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706CrossRefGoogle Scholar
  3. 3.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRefGoogle Scholar
  4. 4.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  5. 5.
    Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  6. 6.
    Georgantzinos SK, Giannopoulos GL, Fatsis A, Vlachakis NV (2016) Analytical expressions for electrostatics of graphene structures. Appl Surf Sci 84:27–36Google Scholar
  7. 7.
    Dong J, Yin CQ, Zhao X, Li YZ, Zhang QH (2013) High strength polyimide fibers with functionalized graphene. Polymer 54:6415–6424CrossRefGoogle Scholar
  8. 8.
    Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640CrossRefGoogle Scholar
  9. 9.
    Qi YY, Tai ZX, Sun DF, Chen JT, Ma HB, Yan XB, Liu B, Xue QJ (2013) Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J Appl Polym Sci 127:1885–1894CrossRefGoogle Scholar
  10. 10.
    Zhang XF, Liu T, Sreekumar TV, Kumar S, Hu XD, Smith K (2004) Gel spinning of PVA/SWNT composite fiber. Polymer 45:8801–8807CrossRefGoogle Scholar
  11. 11.
    Ye HH, Lam H, Titchenal N, Gogotsi Y, Ko F (2004) Reinforcement and rupture behavior of carbon nanotubes-polymer nanofibers. Appl Phys Lett 85:1775–1777CrossRefGoogle Scholar
  12. 12.
    Vigolo B, Pénicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334CrossRefGoogle Scholar
  13. 13.
    Ruan S, Gao P, Yu TX (2006) Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47:1604–1611CrossRefGoogle Scholar
  14. 14.
    Chatterjee S, Nüesch FA, Chu BTT (2013) Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers. Chem Phys Lett 557:92–96CrossRefGoogle Scholar
  15. 15.
    Li JJ, Shao LS, Zhou XH, Wang YH (2014) Fabrication of high strength PVA/rGO composite fibers by gel spinning. RSC Adv 4:43612–43618CrossRefGoogle Scholar
  16. 16.
    Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847–3854CrossRefGoogle Scholar
  17. 17.
    Yu YH, Lin CY, Yeh JM, Lin WH (2003) Preparation and properties of poly(vinyl alcohol)-clay nanocomposite materials. Polymer 44:3553–3560CrossRefGoogle Scholar
  18. 18.
    Yang XM, Shang SM, Li L (2011) Layer-structured poly(vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120:1355–1360CrossRefGoogle Scholar
  19. 19.
    Arisoy B, Wu HC (2008) Material characteristics of high performance lightweight concrete reinforced with PVA. Constr Build Mater 22:635–645CrossRefGoogle Scholar
  20. 20.
    Mu B, Li ZJ, Peng J (2000) Short fiber-reinforced cementitious extruded plates with high percentage of slag and different fibers. Cem Concr Res 30:1277–1282CrossRefGoogle Scholar
  21. 21.
    McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRefGoogle Scholar
  22. 22.
    Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRefGoogle Scholar
  23. 23.
    Wang B, Chen ZM, Zhang J, Cao JJ, Wang SX, Tian Q, Gao M, Xu Q (2014) Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol-gel reaction: effect of graphene oxide on PVA nanofibers and growth of TiO2. Colloids Surf A: Physicochem Eng Asp 457:318–325CrossRefGoogle Scholar
  24. 24.
    Zhang SC, Liu PQ, Jia EP, Zhao XS, Xu JJ, Li CL (2016) Graphene oxide reinforced poly(vinyl alcohol) composite fibers via template-oriented crystallization. J Polym Res 23:215–229CrossRefGoogle Scholar
  25. 25.
    Zhang SC, Liu PQ, Zhao XS, Xu JJ (2017) Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinylalcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization. Appl Surf Sci 396:1098–1107CrossRefGoogle Scholar
  26. 26.
    Paul DG, David TG (1988) Effect of drawing on the α relaxation of poly(vinyl alcohol). J Polym Sci Part B 26:2509–2523CrossRefGoogle Scholar
  27. 27.
    Takahiro Y, Yuji H, Di T, Daiki M, Motoyasu K, Noboru O, Jun-ichiro K, Misao H, Hiroyasu M, Hiroki O, Yuka I, Taro M, Atsushi T (2012) Orientation of poly(vinyl alcohol) nanofiber and crystallites in non-woven electrospun nanofiber mats under uniaxial stretching. Polymer 53:4702–4708CrossRefGoogle Scholar
  28. 28.
    Wang YJ, Tang LC, Gong LX, Yan D, Li YB, Wu LB, Jing JX, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480CrossRefGoogle Scholar
  29. 29.
    Goncalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, Gracio J (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRefGoogle Scholar
  30. 30.
    Gojny FH, Schulte K (2004) Functionalisation effect on the thermomechanical behaviour of multi-wall carbon nanotube/epoxy composites. Compos Sci Technol 64:2303–2308CrossRefGoogle Scholar
  31. 31.
    Ma PC, Mo SY, Tang BZ, Kim JK (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48:1824–1834CrossRefGoogle Scholar
  32. 32.
    Ajayan PM, Suhr J, Koratkar N (2006) Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. J Mater Sci 41:7814–7819CrossRefGoogle Scholar
  33. 33.
    Suhr J, Koratkar N (2008) Energy dissipation in carbon nanotube composites: a review. J Mater Sci 43:4370–4382CrossRefGoogle Scholar
  34. 34.
    Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, Ruoff RS (2011) Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49:2615–2623CrossRefGoogle Scholar
  35. 35.
    Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY, Chen YS (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRefGoogle Scholar
  36. 36.
    Cheng HKF, Sahoo NG, Tan YP, Pan Y, Bao H, Li L, Chan SH, Zhao J (2012) Poly (vinyl alcohol) nanocomposites filled with poly (vinyl alcohol)-grafted graphene oxide. Appl Mater Interfaces 4:2387–2394CrossRefGoogle Scholar
  37. 37.
    Minus ML, Chae HG, Kumar S (2006) Single wall carbon nanotube templated oriented crystallization of poly (vinyl alcohol). Polymer 47:3705–3710CrossRefGoogle Scholar
  38. 38.
    Uddin AJ, Narusawa T, Gotoh Y (2011) Enhancing mechanical properties of gel-spun poly(vinyl alcohol) fibers by iodine doping. Polym Eng Sci 51:647–653CrossRefGoogle Scholar
  39. 39.
    Suzuki A, Murata H, Kunugi T (1998) Application of a high-tension annealing method to nylon 66 fibres. Polymer 39:1351–1355CrossRefGoogle Scholar
  40. 40.
    Miaudet P, Badaire S, Maugey M, Derré A, Pichot V, Launois P, Poulin P, Zakri C (2005) Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Letter (11):2212–2215Google Scholar
  41. 41.
    Gracía-Gutiérrez MC, Nogales A, Rueda DR, Domingo C, García-Ramos JV, Broza G, Roslaniec Z, Schulte K, Davies RJ, Ezquerra TA (2006) Templating of crystallization and shear-induced self-assembly of single-wall carbon nanotubes in a polymer-nanocomposite. Polymer 47:341–345CrossRefGoogle Scholar
  42. 42.
    Ma JJ, Li Y, Yin X, Xu Y, Yue J, Bao JJ, Zhao T (2016) Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv 6:49448–49458CrossRefGoogle Scholar
  43. 43.
    Hong PD, Miyasaka K (1994) Structure of the amorphous phase in highly drawn poly(vinyl alcohol) fibres. Polymer 35:1369–1374CrossRefGoogle Scholar
  44. 44.
    Wang JY, Yang SY, Huang YL, Tien HW, Chin WK, Ma CCM (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21:13569–13575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shengchang Zhang
    • 1
  • Pengqing Liu
    • 1
  • Xiangsen Zhao
    • 1
  • Jianjun Xu
    • 1
  1. 1.State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and EngineeringSichuan UniversityChengduChina

Personalised recommendations