Skip to main content
Log in

Self-suspended polypyrrole with liquid crystal property

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) has attracted wide attention due to its high conductivity, environmental stability, low cost, facile synthesis and doping. However, the rigid backbone and π-conjugation structure of polypyrrole lead to the poor solubility and processability and thus restricting its applications. In this letter, self-suspended PPy was obtained by using a long-chain protonic acid CH3(CH2)8C6H4(OCH2-CH2)10SO3H (NPES) as dopant and then through a common dialysis. Such unique structured PPy is a kind of solvent-free fluid which can flow at or near room temperature. The solubility and processability of self-suspended polypyrrole have been improved effectively due to the introduction of oxyethylene groups and alkyl group. And it also directly presents unique liquid crystal property. Moreover, the self-suspended polypyrrole exhibited a relatively high electrical conductivity reached up to 0.11 S/m, presenting a typical characteristic of the semiconductor. Such self-suspended polypyrrole could be a promising alternative in the field of lightweight battery, super capacitor and metal anti-corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jagur-Grodzinski J (2002) Electronically conductive polymers. Polym Adv Technol 13(9):615–625

    Article  CAS  Google Scholar 

  2. Fan LZ, Maier J (2006) High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem Commun 8(6):937–940

    Article  CAS  Google Scholar 

  3. Kayrak-Talay D, Akman U, Hortaçsu Ö (2008) Supercritical carbon dioxide immobilization of glucose oxidase on polyurethane/polypyrrole composite. J Supercrit Fluids 44(3):457–465

    Article  CAS  Google Scholar 

  4. Gardner JW, Bartlett PN (1993) Design of conducting polymer gas sensors: modelling and experiment. Synth Met 57(1):3665–3670

    Article  Google Scholar 

  5. Somani P, Mandale AB, Radhakrishnan S (2000) Study and development of conducting polymer-based electrochromic display devices. Acta Mater 48(11):2859–2871

    Article  CAS  Google Scholar 

  6. Herrasti P, Ocón P (2001) Polypyrrole layers for steel protection. Appl Surf Sci 172(3):276–284

    Article  CAS  Google Scholar 

  7. Shen Y, Wan M (2015) Soluble conductive polypyrrole synthesized by in situ doping with β-naphthalene sulphonic acid. J Polym Sci A Polym Chem 35(17):3689–3695

    Article  Google Scholar 

  8. Masuda H, Asano DK (2003) Preparation and properties of polypyrrole. Synth Met 135(135):43–44

    Article  Google Scholar 

  9. Brie M, Turcu R, Mihut A (1997) Stability study of conducting polypyrrole films and polyvinylchloride-polypyrrole composites doped with different counterions. Mater Chem Phys 49(2):174–178

    Article  CAS  Google Scholar 

  10. Satoh M, Kaneto K, Yoshino K (1986) Dependences of electrical and mechanical properties of conducting polypyrrole films on conditions of electrochemical polymerization in an aqueous medium. Synth Met 14(4):289–296

    Article  CAS  Google Scholar 

  11. Kim DY, Lee JY, Kim CY, Kang ET, Tan KL (1995) Difference in doping behavior between polypyrrole films and powders. Synth Met 72(3):243–248

    Article  CAS  Google Scholar 

  12. Jang KS, Lee H, Moon B (2004) Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synth Met 143(3):289–294

    Article  CAS  Google Scholar 

  13. Bourlinos A, Ray Chowdhury S, Herrera R, Jiang D, Zhang Q, Archer L et al (2005) Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv Funct Mater 15(8):1285–1290

    Article  CAS  Google Scholar 

  14. Moganty SS, Jayaprakash N, Nugent JL, Shen J, Archer LA (2010) Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew Chem 49(48):9158–9161

    Article  CAS  Google Scholar 

  15. Liu DP, Li GD, Su Y, Chen JS (2006) Highly luminescent zno nanocrystals stabilized by ionic-liquid components. Angew Chem 45(44):7370–7373

    Article  CAS  Google Scholar 

  16. Kim D, Kim Y, Cho J (2013) Solvent-free nanocomposite colloidal fluids with highly integrated and tailored functionalities: rheological, ionic conduction, and magneto-optical properties. Chem Mater 25(19):3834–3843

    Article  CAS  Google Scholar 

  17. Smarsly B, Kaper H (2005) Liquid inorganic-organic nanocomposites: novel electrolytes and ferrofluids. Angew Chem Int Ed Eng 44(25):3809–3811

    Article  CAS  Google Scholar 

  18. Rodriguez R, Herrera R, Archer LA, Giannelis EP (2008) Nanoscale ionic materials. Adv Mater 20(22):4353–4358

    Article  CAS  Google Scholar 

  19. Bourlinos AB, Herrera R, Chalkias N, Jiang DD, Zhang Q, Archer LA et al (2005) Surface functionalized nanoparticles with liquid-like behavior. Adv Mater 17(2):234–237

    Article  CAS  Google Scholar 

  20. Feng Q, Dong L, Huang J, Li Q, Fan Y, Xiong J et al (2010) Fluxible monodisperse quantum dots with efficient luminescence. Angew Chem 49(51):9943–9946

    Article  CAS  Google Scholar 

  21. Tang Z, Cheng G, Chen Y, Yu X, Wang H (2014) Characteristics evaluation of calcium carbonate particles modified by surface functionalization. Adv Powder Technol 25(5):1618–1623

    Article  CAS  Google Scholar 

  22. Li Q, Dong L, Liu Y, Xie H, Xiong C (2011) A carbon black derivative with liquid behavior. Carbon 49(3):1047–1051

    Article  CAS  Google Scholar 

  23. Huang J, Wang M, Wang S, Wang T, Li Q, Dong L et al (2016) Self-suspended polyaniline containing self-dissolved lyotropic liquid crystal with electrical conductivity. J Polym Sci A Polym Chem 54(22):3578–3582

    Article  CAS  Google Scholar 

  24. Huang J, Liu Z, Wang S, Yang Q, Liu B, Liu L et al (2016) Preparation and characterization of self-suspended tetraaniline with liquid crystal texture. Synth Met 220:428–432

    Article  CAS  Google Scholar 

  25. Yurtsever E, Esentürk O, Pamuk HÖ, Yurtsever M (1999) Structural studies of polypyrroles: ii. A monte carlo growth approach to the branch formation. Synth Met 98(3):229–236

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support of National Natural Science Foundation of China (No. 51673154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhikang Liu or Chuanxi Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Xie, H., Hong, J. et al. Self-suspended polypyrrole with liquid crystal property. J Polym Res 25, 56 (2018). https://doi.org/10.1007/s10965-018-1462-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1462-1

Keywords

Navigation