Photo-induced controlled radical polymerization with new Photocatalyst

ORIGINAL PAPER
  • 144 Downloads

Abstract

Photo-induced electron transfer reversible addition-fragmentation chain transfer (PET RAFT) of methyl methacrylate (MMA) was investigated at 25 °C with rose bengal (4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein) (RB) as photoredox catalyst under visible light irradiation. The traditional chain transfer agent 4-cyanopentanoic acid dithiobenzoate (CPADB) was employed in this study. The kinetic curve of the photo-induced PET RAFT polymerization exhibited a good linear behavior. The number average molecular weights (Mn,GPC) of the poly(methyl methacrylate) (PMMA) increased linearly with respect to monomer consumption and they were in good agreement with the calculated values (Mn,th). At the same time the molecular weight distribution (Mw/Mn) was narrow. Temporal control of PET RAFT polymerization of MMA was demonstrated by “ON/OFF” experiments. The resulting PMMA was characterized by 1H–NMR, and GPC. The resultant PMMA could be used as macro-chain transfer agents for the PET RAFT radical polymerization. The chain experiments were successfully carried out and the living characteristics were demonstrated. The probable mechanism was discussed.

Keywords

Living radical polymerization Photoinduced Photoelectron transfer Reversible addition-fragmentation chain transfer 

Notes

Acknowledgments

We thank the National Natural Science Foundation of China (51674117, 51503063), Scientific Research Fund of Hunan Provincial Education Department (Grant No 16 K036, 15B101).

References

  1. 1.
    Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Macromol 31: 5559Google Scholar
  2. 2.
    Perrier S (2017) Macromol 50: 7433Google Scholar
  3. 3.
    Anastasaki A, Nikolaou V, Zhang Q, Burns J, Samanta SR, Waldron C, Haddleton AJ, McHale R, Fox D, Percec V, Wilson P, Haddleton DM (2014) J Am Chem Soc 136: 1141Google Scholar
  4. 4.
    Wolpers A, Vana P (2014) Macromol 47: 954Google Scholar
  5. 5.
    Perkowski AJ, You W, Nicewicz DA (2015). J Am Chem Soc 137:7580CrossRefGoogle Scholar
  6. 6.
    Millard P-E, Barner L, Stenzel MH, Davis TP, BarnerKowollik C, Muller AHE (2006). Macromol Rapid Commun 27:821CrossRefGoogle Scholar
  7. 7.
    Hu Z, Zhang Z (2006). Macromol 39:1384CrossRefGoogle Scholar
  8. 8.
    Madrid JF, Ueki Y, Abad LV, Yamanobe T, Seko N (2017). J Appl Polym Sci:134.  https://doi.org/10.1002/app.45270
  9. 9.
    Muthukrishnan S, Pan EH, Stenzel MH, Barner-Kowollik C, Davis TP, Lewis D, Barner L (2007). Macromol 40:2978CrossRefGoogle Scholar
  10. 10.
    Reeves JA, Allegrezza ML, Konkolewicz D (2017). Macromol Rapid Commun 38:1600623CrossRefGoogle Scholar
  11. 11.
    Zhang H, Deng J, Lu L, Cai Y (2007). Macromol 40:9252CrossRefGoogle Scholar
  12. 12.
    Junkers T, Theis A, Buback M, Davis TP, Stenzel MH, Vana P, Barner-Kowollik C (2005). Macromol 38:9497CrossRefGoogle Scholar
  13. 13.
    Buback M, Junkers T, Vana P (2005). Macromol Rapid Commun 26:796CrossRefGoogle Scholar
  14. 14.
    Tsudaka T, Kotani H, Ohkubo K, Nakagawa T, Tkachenko NV, Lemmetyinen H, Fukuzum S (2017). Chem A Eur J 23:1306CrossRefGoogle Scholar
  15. 15.
    Dadashi-Silab S, Doran S, Yagci Y (2016). Chem Rev 116:10212CrossRefGoogle Scholar
  16. 16.
    Sanders AM, Magnanelli TJ, Bragg AE, Tovar JD (2016). J Am Chem Soc 138:3362CrossRefGoogle Scholar
  17. 17.
    Marcus RA (1993). Angew Chem In Ed 32:1111CrossRefGoogle Scholar
  18. 18.
    Pérez-Ruiz R, Jiménez MC, Miranda MA (2014). Acc Chem Res 47:1359CrossRefGoogle Scholar
  19. 19.
    Escudero D (2016). Acc Chem Res 49:1816CrossRefGoogle Scholar
  20. 20.
    Sanders AM, Magnanelli TJ, Bragg AE, Tovar JD (2016). J Am Chem Soc 138:3362CrossRefGoogle Scholar
  21. 21.
    Xu J, Jung K, Corrigan NA, Boyer C (2014). Chem Sci 5:3568CrossRefGoogle Scholar
  22. 22.
    Xu J, Shanmugam S, Duong HT, Boyer C (2015). Polym Chem 6:5615CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Wang W, He X, Sang A (2012). Chem Lett 41:1500CrossRefGoogle Scholar
  24. 24.
    Pan Y, Kee CW, Chen L, Tan C-H (2011). Green Chem 13:2682CrossRefGoogle Scholar
  25. 25.
    Thang SH, Mayadunne RTA, Moad G, Rizzardo E, Chong YK (1999). Tetra Lett 40:2435CrossRefGoogle Scholar
  26. 26.
    Han X, Fan J, He J, Xu J, Fan D, Yang Y (2017). Macromol 40:5618CrossRefGoogle Scholar
  27. 27.
    Shanmugam S, Xu J, Boyer C (2016). Angew Chem 128:1048CrossRefGoogle Scholar
  28. 28.
    Shanmugam S, Xu J, Boyer C (2015). Chem Sci 6:1341CrossRefGoogle Scholar
  29. 29.
    Fu Q, Ruan Q, McKenzie TG, Reyhani A, Tang J, Qiao GR (2017). Macromol 50:7509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangChina
  2. 2.College of Life Science & Resources EnvironmentYichun UniversityYichunChina

Personalised recommendations