Control of morphology and performance of diketopyrrolopyrrole-based electrochromic polymers using solvent vapor annealing

  • Wei Teng Neo
  • Qun Ye
  • Zugui Shi
  • Soo-Jin Chua
  • Jianwei Xu


Post-deposition treatment including thermal and solvent annealing of polymer films in various organic electronics such as organic photovoltaics and organic thin film transistors plays a vital role in governing the film morphology and consequently their optical and electronic properties. However, such a post-treatment method has yet been used for electrochromics. This paper studied the influence of solvent vapor annealing of a diketopyrrolopyrrole-containing electrochromic conjugated polymer on its film morphology. Compared to an un-annealed film, the films exposed to acetone vapor and chloroform vapor are generally composed of polymer clusters with smaller domain sizes and more compact, aggregated structures. Subsequent evaluation of the electrochromic performances of the devices revealed the strong influence of the film morphologies on the optical contrasts, switching times and coloration efficiencies. In general, the electrochromic films treated with a poor solvent (acetone) exhibited faster switching speeds and improved coloration efficiencies. In contrast, treatment with a good solvent (chloroform) had destructive effects on the optical contrasts, switching speeds and coloration efficiency of the films. These findings showed that the electrochromic performance closely corresponded to changes in the film structure and morphology.


Conjugated polymers Electrochromism Electrochromic device Solvent vapor annealing Morphology 



This research was supported by the Agency for Science, Technology and Research (A*STAR) and Ministry of National Development (MND) Green Building Joint Grant (No. 1321760011).


  1. 1.
    Ming S, Zhen S, Lin K, Zhao L, Xu J, Lu B (2015) Thiadiazolo[3,4-c]pyridine as an acceptor toward fast-switching green donor–acceptor-type electrochromic polymer with low bandgap. ACS Appl Mater Interfaces 7:11089–11098CrossRefGoogle Scholar
  2. 2.
    Karabay B, Pekel LC, Cihaner A (2015) A pure blue to highly Transmissive electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high optical contrast ratio. Macromolecules 48:1352–1357CrossRefGoogle Scholar
  3. 3.
    Atakan G, Gunbas G (2016) A novel red to transmissive electrochromic polymer based on phenanthrocarbazole. RSC Adv 6:25620–25623CrossRefGoogle Scholar
  4. 4.
    He B, Neo WT, Chen TL, Klivansky LM, Wang H, Tan T, Teat SJ, Xu J, Liu Y (2016) Low bandgap conjugated polymers based on a nature-inspired bay-annulated indigo (BAI) acceptor as stable electrochromic materials. ACS Sustain Chem Eng 4:2797–2805CrossRefGoogle Scholar
  5. 5.
    Neo WT, Ye Q, Chua S-J, Xu J (2016) Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. J Mater Chem C 4:7364–7376CrossRefGoogle Scholar
  6. 6.
    Neo WT, Cho CM, Shi Z, Chua S-J, Xu J (2016) Modulating high-energy visible light absorption to attain neutral-state black electrochromic polymers. J Mater Chem C 4:28–32CrossRefGoogle Scholar
  7. 7.
    Cho CM, Ye Q, Neo WT, Lin T, Lu X, Xu J (2015) Ultrahigh electron-deficient pyrrolo-acenaphtho-pyridazine-dione based donor-acceptor conjugated polymers for electrochromic applications. Polym Chem 6:7570–7579CrossRefGoogle Scholar
  8. 8.
    Ye Q, Neo WT, Lin T, Song J, Yan H, Zhou H, Shah KW, Chua SJ, Xu J (2015) Pyrrolophthalazine dione (PPD)-based donor-acceptor polymers as high performance electrochromic materials. Polym Chem 6:1487–1494CrossRefGoogle Scholar
  9. 9.
    Ye Q, Neo WT, Cho CM, Yang SW, Lin T, Zhou H, Yan H, Lu X, Chi C, Xu J (2014) Synthesis of Ultrahighly electron-deficient Pyrrolo[3,4-d]pyridazine-5,7-dione by inverse electron demand Diels–Alder reaction and its application as electrochromic materials. Org Lett 16:6386–6389CrossRefGoogle Scholar
  10. 10.
    Cho CM, Ye Q, Neo WT, Lin T, Song J, Lu X, Xu J (2015) Red-to-black electrochromism of 4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-embedded conjugated polymers. J Mater Sci 50:5856–5864CrossRefGoogle Scholar
  11. 11.
    Wang J, Yan H, Lu Y (2015) The thiophene derivative with ferricyanide end group and its polymers: synthesis and electrochromic performance. J Mater Sci 50:6920–6925CrossRefGoogle Scholar
  12. 12.
    Coskun Y, Cirpan A, Toppare L (2007) Construction of electrochromic devices using thiophene based conducting polymers. J Mater Sci 42:368–372CrossRefGoogle Scholar
  13. 13.
    Goldie DM (2008) Transient bleaching pulse shapes in electrochromic polysiloxane thin films. J Mater Sci 43:1818–1824CrossRefGoogle Scholar
  14. 14.
    Lakshmanan R, Raja PP, Shivaprakash NC, Sindhu S (2016) Fabrication of fast switching electrochromic window based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film. J Mater Sci Mater Electron 27:6035–6042CrossRefGoogle Scholar
  15. 15.
    Ji Y, Niu H, Zhang H, Wu W, Cai J, Wang C, Bai X, Wang W (2014) Synthesis and electrochromic properties of polybismaleimides containing triphenylamine units. J Solid State Electrochem 18:1537–1544CrossRefGoogle Scholar
  16. 16.
    Remmele J, Shen DE, Mustonen T, Fruehauf N (2015) High performance and long-term stability in Ambiently fabricated segmented solid-state polymer electrochromic displays. ACS Appl Mater Interfaces 7:12001–12008CrossRefGoogle Scholar
  17. 17.
    Chandrasekhar P, Zay BJ, Cai C, Chai Y, Lawrence D (2014) Matched-dual-polymer electrochromic lenses, using new cathodically coloring conducting polymers, with exceptional performance and incorporated into automated sunglasses. J Appl Polym Sci 131:41043Google Scholar
  18. 18.
    Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR (2015) Four shades of Brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl Mater Interfaces 7:1413–1421CrossRefGoogle Scholar
  19. 19.
    Yu H, Shao S, Yan L, Meng H, He Y, Yao C, Xu P, Zhang X, Hu W, Huang W (2016) Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. J Mater Chem C 4:2269–2273CrossRefGoogle Scholar
  20. 20.
    Jensen J, Hösel M, Kim I, Yu J-S, Jo J, Krebs FC (2014) Fast switching ITO free electrochromic devices. Adv Funct Mater 24:1228–1233CrossRefGoogle Scholar
  21. 21.
    Xu T, Walter EC, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec HJ, Talin AA (2016) High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7:10479CrossRefGoogle Scholar
  22. 22.
    Eric Shen D, Osterholm AM, Reynolds JR (2015) Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices. J Mater Chem C 3:9715–9725CrossRefGoogle Scholar
  23. 23.
    Kuno T, Matsumura Y, Nakabayashi K, Atobe M (2016) Electroresponsive structurally colored materials: a combination of structural and electrochromic effects. Angew Chem Int Ed 55:2503–2506CrossRefGoogle Scholar
  24. 24.
    Otley MT, Alamer FA, Zhu Y, Singhaviranon A, Zhang X, Li M, Kumar A, Sotzing GA (2014) Acrylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices. ACS Appl Mater Interfaces 6:1734–1739CrossRefGoogle Scholar
  25. 25.
    Huang Y, Kramer EJ, Heeger AJ, Bazan GC (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114:7006–7043CrossRefGoogle Scholar
  26. 26.
    Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38:1929–1940CrossRefGoogle Scholar
  27. 27.
    Shao W, Dong H, Jiang L, Hu W (2011) Morphology control for high performance organic thin film transistors. Chem Sci 2:590–600CrossRefGoogle Scholar
  28. 28.
    Caria S, Como ED, Murgia M, Zamboni R, Melpignano P, Biondo V (2006) Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices. J Phys Condens Matter 18:S2139CrossRefGoogle Scholar
  29. 29.
    Yoon Y, Lee H, Kim T, Kim K, Choi S, Yoo HK, Friedman B, Lee K (2013) Post-annealing effect on the interface morphology and current efficiency of organic light-emitting diodes. Solid State Electron 79:45–49CrossRefGoogle Scholar
  30. 30.
    Lv H, Zhao X, Xu W, Li H, Chen J, Yang X (2013) Improving performance of polymer solar cells based on PSBTBT/PC71BM via controlled solvent vapor annealing. Org Electron 14:1874–1881CrossRefGoogle Scholar
  31. 31.
    Gholamkhass B, Servati P (2013) Solvent–vapor induced morphology reconstruction for efficient PCDTBT based polymer solar cells. Org Electron 14:2278–2283CrossRefGoogle Scholar
  32. 32.
    Huang Y-C, Chia H-C, Chuang C-M, Tsao C-S, Chen C-Y, Su W-F (2013) Facile hot solvent vapor annealing for high performance polymer solar cell using spray process. Sol Energy Mater Sol Cells 114:24–30CrossRefGoogle Scholar
  33. 33.
    S.R. Puniredd, W. Pisula, K. Müllen, 2 - Influence of film morphology on optical and electronic properties of organic materials A2 - Ostroverkhova, Oksana, Handbook of Organic Materials for Optical and (Opto)electronic Devices, Woodhead Publishing 2013, pp. 83–101Google Scholar
  34. 34.
    Wessendorf CD, Schulz GL, Mishra A, Kar P, Ata I, Weidelener M, Urdanpilleta M, Hanisch J, Mena-Osteritz E, Lindén M, Ahlswede E, Bäuerle P (2014) Efficiency improvement of solution-processed Dithienopyrrole-based A-D-A Oligothiophene bulk-heterojunction solar cells by solvent vapor annealing. Adv Energy Mater 4:1400266CrossRefGoogle Scholar
  35. 35.
    Miao J, Chen H, Liu F, Zhao B, Hu L, He Z, Wu H (2015) Efficiency enhancement in solution-processed organic small molecule: fullerene solar cells via solvent vapor annealing. Appl Phys Lett 106:183302CrossRefGoogle Scholar
  36. 36.
    Dickey KC, Anthony JE, Loo YL (2006) Improving organic thin-film transistor performance through solvent-vapor annealing of solution-Processable Triethylsilylethynyl Anthradithiophene. Adv Mater 18:1721–1726CrossRefGoogle Scholar
  37. 37.
    Kang S-J, Song S, Liu C, Kim D-Y, Noh Y-Y (2014) Evolution in crystal structure and electrical performance of thiophene-based polymer field effect transistors: a remarkable difference between thermal and solvent vapor annealing. Org Electron 15:1972–1982CrossRefGoogle Scholar
  38. 38.
    Liang J, Zhong W, Ying L, Yang W, Peng J, Cao Y (2015) The effects of solvent vapor annealing on the performance of blue polymer light-emitting diodes. Org Electron 27:1–6CrossRefGoogle Scholar
  39. 39.
    Huang J-H, Yang C-Y, Hsu C-Y, Chen C-L, Lin L-Y, Wang R-R, Ho K-C, Chu C-W (2009) Solvent-annealing-induced self-Organization of Poly(3-hexylthiophene), a high-performance electrochromic material. ACS Appl Mater Interfaces 1:2821–2828CrossRefGoogle Scholar
  40. 40.
    Neo WT, Shi Z, Cho CM, Chua S-J, Xu J (2015) Effects of chemical composition, film thickness, and morphology on the electrochromic properties of donor–acceptor conjugated copolymers based on Diketopyrrolopyrrole. Chem Plus Chem 80:1298–1305Google Scholar
  41. 41.
    Verploegen E, Miller CE, Schmidt K, Bao Z, Toney MF (2012) Manipulating the morphology of P3HT–PCBM bulk heterojunction blends with solvent vapor annealing. Chem Mater 24:3923–3931CrossRefGoogle Scholar
  42. 42.
    De Luca G, Treossi E, Liscio A, Mativetsky JM, Scolaro LM, Palermo V, Samori P (2010) Solvent vapour annealing of organic thin films: controlling the self-assembly of functional systems across multiple length scales. J Mater Chem 20:2493–2498CrossRefGoogle Scholar
  43. 43.
    Goh T, Huang J-S, Bartolome B, Sfeir MY, Vaisman M, Lee ML, Taylor AD (2015) Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing. J Mater Chem A 3:18611–18621CrossRefGoogle Scholar
  44. 44.
    Padilla J, Österholm AM, Dyer AL, Reynolds JR (2015) Process controlled performance for soluble electrochromic polymers. Sol Energy Mater Sol Cells 140:54–60CrossRefGoogle Scholar
  45. 45.
    Somani PR, Radhakrishnan S (2003) Electrochromic materials and devices: present and future. Mater Chem Phys 77:117–133CrossRefGoogle Scholar
  46. 46.
    Jung B, Kim K, Eom Y, Kim W (2015) High-pressure solvent vapor annealing with a benign solvent to rapidly enhance the performance of organic photovoltaics. ACS Appl Mater Interfaces 7:13342–13349CrossRefGoogle Scholar
  47. 47.
    Liu C, Khim D, Noh Y-Y (2014) Organic field-effect transistors by a solvent vapor annealing process. J Nanosci Nanotechnol 14:1476–1493CrossRefGoogle Scholar
  48. 48.
    Liu Y, Shi Q, Dong H, Tan J, Hu W, Zhan X (2012) Solvent-vapor induced self-assembly of a conjugated polymer: a correlation between solvent nature and transistor performance. Org Electron 13:2372–2378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Wei Teng Neo
    • 1
    • 2
  • Qun Ye
    • 1
  • Zugui Shi
    • 1
  • Soo-Jin Chua
    • 1
    • 3
  • Jianwei Xu
    • 1
    • 4
  1. 1.Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore
  4. 4.Department of ChemistryNational University of SingaporeSingaporeSingapore

Personalised recommendations