Biocompatible tumor micro-environment responsive CS-g-PNIPAAm co-polymeric nanoparticles for targeted Oxaliplatin delivery

  • Archana S. Patil
  • Anand P. Gadad
  • Ravindra D. Hiremath
  • Shrinivas D. Joshi
ORIGINAL PAPER
  • 74 Downloads

Abstract

The objective of the research study was to develop and characterize a biodegradable, thermo and pH dual responsive Oxaliplatin-loaded chitosan-graft-poly-N-isopropylacrylamide (CS-g-PNIPAAm) co-polymeric nanoparticles as a tumor-targeting drug delivery system. CS-g-PNIPAAm co-polymers were synthesized, characterized and optimized its thermo and pH responsive properties for tumor microenvironment conditions. Optimized co-polymer could be efficiently loaded with Oxaliplatin in nanoparticle form, evaluated for their morphology (TEM), particle size, zeta potential, loading efficiency and drug content. In vitro drug release study at tumor microenvironment and physiological pH and temperature conditions. The in vitro drug release was optimal at above lower critical solution temperature (LCST) and tumor microenvironment pH when compared to physiological pH & temperature. MTT assay and fluorescence microscopic study showed that drug release and cell uptake was significantly enhanced in tumor microenvironment. In conclusion, the obtained nanoparticles appeared to be of great promise in tumor targeted drug delivery of oxaliplatin.

Keywords

Oxaliplatin Thermo and pH responsive nanoparticles Chitosan-graft-poly-N-isopropylacrylamide co-polymer Tumor targeting 

Notes

Acknowledgements

Authors are thankful to the KLE University, Belagavi for provinding grant to perform this research work. Authors extend their regards to Dr. Prabhakar Kore Basic Science Research Centre, KLE University Belagavi for providing their amenities to carry out this work. The authors are also thankful to Central Institute of Fisheries Technology, Cochin, India for providing chitosan as gift sample.

References

  1. 1.
    Chih-Hao H, Cheng-Fan W, Trong-Ming D, Wen-Yen C (2013) Preparation of pH- and thermosensitive chitosan-PNIPAAm core–shell nanoparticles and evaluation as drug carriers. Cellulose 20:1791–1805CrossRefGoogle Scholar
  2. 2.
    Priya B, Viness P, Yahya EC, du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4:1–15Google Scholar
  3. 3.
    Fabienne D, Olivier F, Véronique P (2010) To exploit the tumor micro-environment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146CrossRefGoogle Scholar
  4. 4.
    Yin H, Bae YH (2009) Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from a mixture of poly(L-histidine)-b-poly(L-lactide)-b-poly(ethylene glycol). Eur J Pharm Sci 71:223–230Google Scholar
  5. 5.
    Belgacem M, Gandini A (2008) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  6. 6.
    Ru C, Fenghua M, Chao D, Harm-Anton K, Zhiyuan Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657CrossRefGoogle Scholar
  7. 7.
    Nívia do NM, Ana Maria da SM, Rosangela de CB (2015) Development of dual-sensitive smart polymers by grafting chitosan with poly (N-isopropylacrylamide): an overview. Polímeros 25(3):237–246CrossRefGoogle Scholar
  8. 8.
    Brun-Graeppi AKAS, Richard C, Bessodes M, Scherman D, Merten OW (2010) Thermoresponsive surfaces for cell culture and enzyme-free cell detachment. Prog Polym Sci 35(11):1311–1324CrossRefGoogle Scholar
  9. 9.
    Li F, Wu H, Zhang H, Li F, Yang TH, Gu CH et al (2008) Novel super pH sensitive nanoparticles responsive to tumor extracellular pH. Carbohydr Polym 73(3):390–400CrossRefGoogle Scholar
  10. 10.
    Li F, Wu H, Zhang H, Gu CH, Yang Q (2009) Antitumor drug paclitaxel loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohydr Polym 77(4):773–778CrossRefGoogle Scholar
  11. 11.
    Cunxian D, Dianrui Z, Feihu W, Dandan Z, Lejiao J, Feifei F et al (2011) Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm 409:252–259CrossRefGoogle Scholar
  12. 12.
    Rejinold NS, Sreerekha PR, Chennazhi KP, Nair SV, Jayakumar R (2011) Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarriers for curcumin drug delivery. Int J Biol Macromol 49(2):161–172CrossRefGoogle Scholar
  13. 13.
    Zhang T, Li G, Guo L, Chen H (2012) Synthesis of thermo-sensitive CS-g-PNIPAM/CMC complex nanoparticles for controlled release of 5-FU. Int J Biol Macromol 51:1109–1115CrossRefGoogle Scholar
  14. 14.
    Wang Y, Wang J, Xu H, Ge L, Zhu J (2015) Investigation of dual-sensitive nanogels based on chitosan and N-isopropylacrylamide and its intelligent drug delivery of 10-hydroxycamptothecine. Drug Deliv 22(6):803–813CrossRefGoogle Scholar
  15. 15.
    Rejinold NS, Chennazhi KP, Nair SV, Jayakumar R (2013) Thermo-responsive chitosan-graft-poly(N-isopropyl acrylamide) co-polymeric nanoparticles for 5-fluorouracil delivery to breast cancer cells in vitro. J Nanopharmaceutics Drug Delivery 1(1):18–29CrossRefGoogle Scholar
  16. 16.
    Jaiswal MK, Pradhan A, Banerjee R, Bahadur D (2014) Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy. J Nanosci Nanotechnol 14(6):4082–4089(8)CrossRefGoogle Scholar
  17. 17.
    Antoniraj MG, Senthil Kumar C, Kandasamy R (2016) Synthesis and characterization of poly (N-isopropylacrylamide)-g-carboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid Polym Sci 294:527–235CrossRefGoogle Scholar
  18. 18.
    Luo YL, Zhang XY, Fu JY, Xu F, Chen YS (2017) Novel temperature and pH dual sensitive PNIPAM/CMCS/MWCNTs semi-IPN nanohybrid hydrogels: synthesis, characterization and DOX drug release. Int J Polym Mater 66(8):398–409CrossRefGoogle Scholar
  19. 19.
    Abhimanyu P, Shivani S, Bhaskar R, Anne-Laure P, Shiladitya S (2012) Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy. Nanotechnology 23(7):1–17Google Scholar
  20. 20.
    Tashiro T, Kawada Y, Sakurai Y, Kidani Y (1989) Antitumor activity of a new platinum complex, oxalato (trans-l-1, 2-diaminocyclohexane) platinum (II): new experimental data. Biomed Pharmacother 43(4):251–260CrossRefGoogle Scholar
  21. 21.
    Qiua L, Yanga L, Zhoub H, Longa M, Jianga W, Wanga D, Zhanga X (2012) Encapsulation of oxaliplatin in nanostructured lipid carriers-preparation, physicochemical characterization and in vitro evalulation. Asian. J Pharm Sci 7(5):352–358Google Scholar
  22. 22.
    Chuang Y, Zhong-Xue F (2014) Liposomal delivery and polyethylene glycol-liposomal oxaliplatin for the treatment of colorectal cancer (review). Biomed Rep 2:335–339CrossRefGoogle Scholar
  23. 23.
    Jingde C, Hong J, Yin W, Yandong L, Yong G (2015) A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation. Drug Des Devel Ther 9:2265–2275Google Scholar
  24. 24.
    Chuang Y, Hai-Zhong L, Zhong-Xue F (2012) Effects of PEG-liposomal oxaliplatin on apoptosis and expression of cyclin a and cyclin D1in colorectal cancer cells. Oncol Rep 28:1006–1012CrossRefGoogle Scholar
  25. 25.
    Chuang Y, Hai ZL, Zhong XF, Wei DL (2011) Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol 11(21):1–8Google Scholar
  26. 26.
    Qiu L, Yang L, Zhou H, Wang D (2012) Encapsulation of oxaliplatin in nanostructured lipid carriers preparation, physicochemical characterization and in vitro evalulation. Asian J Pharm 7(5):316–324Google Scholar
  27. 27.
    Linlin W, Changjun M, Hong W, Xiaohe L, Qinghai M, Yu C, Wanshan M (2013) PEGylated multi-walled carbon nanotubes for encapsulation and sustained release of oxaliplatin. Pharm Res 30(2):412–423CrossRefGoogle Scholar
  28. 28.
    Wang K, Liu L, Zhang T, Zhu Y, Qiu F (2011) Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nanomedicine 6:3207–3218Google Scholar
  29. 29.
    Shashank T, Satish Kumar MN, Gowthamarajan K, Ashwati P, Rama Satyanarayana Raju K, Shashank M (2014) Preparation, physicochemical characterization and in vitro evaluation of oxaliplatin solid lipid nanoparticles for the treatment of colorectal cancer. Indo Am J Pharm Res 4(08):3579–3587Google Scholar
  30. 30.
    Vivek R, Thangam R, Nipunbabu V, Ponraj T, Kannan S (2014) Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a "smart" drug delivery system to breast cancer cell therapy. Int J Biol Macromol 65:289–297CrossRefGoogle Scholar
  31. 31.
    Jonathan PM, Mark JE, Elijus U, Shyh-Dar L (2013) Thermosensitive liposomes for the delivery of gemcitabine and Oxaliplatin to tumors. Mol Pharm 10(12):4499–4508CrossRefGoogle Scholar
  32. 32.
    Jocic D, Tourrette A, Glampedaki P, Warmoeskerken MMCG (2009) Application of temperature and pH responsive microhydrogels for functional finishing of cotton fabric. Mater Technol 24(1):14–23CrossRefGoogle Scholar
  33. 33.
    SelvakumarK YAV (2009) Formulation and evaluation of carvedilol loaded Eudragite 100 nanoparticles. Int J PharmTech Res 1(2):179–183Google Scholar
  34. 34.
    Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, Sung HW (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30:4877–4888CrossRefGoogle Scholar
  35. 35.
    Fan L, Hong W, HuiZ FL, Chun-hu G, Qian Y (2009) Antitumor drug paclitaxel-loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohydr Polym 77:773–778CrossRefGoogle Scholar
  36. 36.
    Wang Y, Liu L, Weng J, Zhang Q (2007) Preparation and characterization of self aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan conjugates. Carbohydr Polym 69:597–606CrossRefGoogle Scholar
  37. 37.
    Lai JY, Luo LJ (2017) Chitosan-g-poly(N-isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration. Eur J Pharm Biopharm 113:140–148CrossRefGoogle Scholar
  38. 38.
    Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295CrossRefGoogle Scholar
  39. 39.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95(8):4607–4612CrossRefGoogle Scholar
  40. 40.
    Haleya B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26(1):57–64CrossRefGoogle Scholar
  41. 41.
    Zhang BL, Guo R, Yang M, Jiang X, Liu B (2007) Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv Mater 19:2988–2992CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Archana S. Patil
    • 1
  • Anand P. Gadad
    • 1
  • Ravindra D. Hiremath
    • 2
  • Shrinivas D. Joshi
    • 3
  1. 1.Department of Pharmaceutics, KLE Academy of Higher Education and ResearchKLE College of PharmacyBelagaviIndia
  2. 2.Department of Pharmaceutical chemistry, K.L.E’s College of PharmacyNippaniIndia
  3. 3.Department of Pharmaceutical chemistryS.E.T’s College of PharmacyDharwadIndia

Personalised recommendations