Skip to main content
Log in

Self-assembly nucleic acid-based biopolymers: learn from the nature

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This review highlights the recent developments in nucleic acid-based based materials for biomedical applications and functional devices. DNA and RNA are anionic macromolecules composing sugar-phosphate backbone, which usually structure as rod-like double helix with base pair stacking. Electrostatic interactions are the main components in the complex formed between anionic nucleic acid and cationic molecule. These nucleic acid-based biopolymers have significant potential as functional materials for drug delivery, biosensors, and a scaffold for many biodegradable materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhou Z, Yan X, Cook TR, Saha ML, Stang PJ (2016). J Am Chem Soc 138(3):806

    Article  CAS  Google Scholar 

  2. Mattia E, Otto S (2015) Supramolecular systems chemistry. Nat Mater. https://doi.org/10.1038/NNANO.2014.337

  3. Liu K, Kang Y, Wang Z, Zhang X (2013). Adv Mater 25:5530

    Article  CAS  Google Scholar 

  4. Stoffelen C, Huskens J (2016). Small 12(1):9798

    Article  Google Scholar 

  5. Qian X, Gong W, Li X, Fang L, Kuang X, Ning G (2016). Chem Eur J 22:6881

    Article  CAS  Google Scholar 

  6. Wbber MJ, Appel EA, Meijer EW, Langer R (2016). Nat Mater 15:13

    Article  Google Scholar 

  7. Tirrell M, Kokkoli E, Biesalski M (2002). Surf Sci 500:61

    Article  CAS  Google Scholar 

  8. Lehn J-M (1993). Science 260:16

    Article  Google Scholar 

  9. Wang H, Yan H, Zhu Y, Chen W, Zhang J, Wang C (2016). J Polym Res 23:73

    Article  Google Scholar 

  10. Hu D, Chen K, Zou G, Zhang Q (2012). J Polym Res 19:9983

    Article  Google Scholar 

  11. Li L, Smitthipong W, Zeng H (2015). Polym Chem 6:353

    Article  CAS  Google Scholar 

  12. Chollakup R, Smitthipong W, Chworos A (2010). Polym Chem 1:658

    Article  CAS  Google Scholar 

  13. Chollakup R, Smitthipong W, Eisenbach CD, Tirrell (2010). Macromolecules 43(5):2518

    Article  CAS  Google Scholar 

  14. Peters GM, Davis JT (2016). Chem Soc Rev. https://doi.org/10.1039/c6cs00183a

  15. Liu L, Xia D, Klausen LH, Dong M (2014). Int J Mol Sci 15(2):1901

    Article  Google Scholar 

  16. Koltover I, Salditt T, Rädler JO, Safinya CR (1998). Science 281(5373):78

    Article  CAS  Google Scholar 

  17. Vinogradova OI, Lebedeva OV, Vasilev K, Gong H, Garcia-Turiel J, Kim BS (2005). Biomacromolecules 6(3):1495

    Article  CAS  Google Scholar 

  18. Hoshino Y, Tajima S, Nakayama H, Okahata Y (2002). Macromol Rapid Commun 23:253

    Article  CAS  Google Scholar 

  19. Inoue Y, Fukushima T, Hayakawa T, Takeuchi H, Kaminishi H, Miyazaki K, Okahata Y (2003). J Biomed Mater Res A 65A:204

    Article  Google Scholar 

  20. Smitthipong W, Chworos A, Lin B, Neumann T, Gajiria S, Jaeger L, Tirrell M (2008) Mater Res Soc Symp Proc 1094 paper number 1094-DD06-05

  21. Kang M, Kim H, Leal C (2016). Curr Opin Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2016.09.006

  22. Smitthipong W, Neumann T, Chworos A, Jaeger L, Tirrell M (2008). Macromol Symp 264:13

    Article  CAS  Google Scholar 

  23. Neumann T, Gajria S, Bouxsein NF, Jaeger L, Tirrel M (2010). J Am Chem Soc 132(20):7025

    Article  CAS  Google Scholar 

  24. Smitthipong W, Neumann T, Gajria S, Li Y, Chworos A, Jaeger L, Tirrell M (2009). Biomacromolecules 10:221

    Article  CAS  Google Scholar 

  25. Okahata Y, Kawasaki T (2005). Top Curr Chem 260:57

    Article  CAS  Google Scholar 

  26. Schmidt SW, Kersch A, Beyer MK, Clausen-Schaumann H (2011). Phys Chem Chem Phys 13:5994

    Article  CAS  Google Scholar 

  27. Li Y, Nese A, Matyjaszewski K, Sheiko SS (2013). Macromolecules 46(18):7196

    Article  CAS  Google Scholar 

  28. Chollakup R, Smitthipong W, Chworos A (2014). RSC Adv 4(58):30648

    Article  CAS  Google Scholar 

  29. Chollakup R, Smitthipong W (2012). Polym Chem 3:2350

    Article  CAS  Google Scholar 

  30. Chollakup R, Smitthipong W, Chworos A (2013). RSC Adv 3:4745

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Thailand. The authors would like to gratefully acknowledge Professor Matthew Tirrell from University of Chicago for all the supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wirasak Smitthipong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakornpadungsit, P., Smitthipong, W. & Chworos, A. Self-assembly nucleic acid-based biopolymers: learn from the nature. J Polym Res 25, 45 (2018). https://doi.org/10.1007/s10965-018-1441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1441-6

Keywords

Navigation