Abstract
This review highlights the recent developments in nucleic acid-based based materials for biomedical applications and functional devices. DNA and RNA are anionic macromolecules composing sugar-phosphate backbone, which usually structure as rod-like double helix with base pair stacking. Electrostatic interactions are the main components in the complex formed between anionic nucleic acid and cationic molecule. These nucleic acid-based biopolymers have significant potential as functional materials for drug delivery, biosensors, and a scaffold for many biodegradable materials.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zhou Z, Yan X, Cook TR, Saha ML, Stang PJ (2016). J Am Chem Soc 138(3):806
Mattia E, Otto S (2015) Supramolecular systems chemistry. Nat Mater. https://doi.org/10.1038/NNANO.2014.337
Liu K, Kang Y, Wang Z, Zhang X (2013). Adv Mater 25:5530
Stoffelen C, Huskens J (2016). Small 12(1):9798
Qian X, Gong W, Li X, Fang L, Kuang X, Ning G (2016). Chem Eur J 22:6881
Wbber MJ, Appel EA, Meijer EW, Langer R (2016). Nat Mater 15:13
Tirrell M, Kokkoli E, Biesalski M (2002). Surf Sci 500:61
Lehn J-M (1993). Science 260:16
Wang H, Yan H, Zhu Y, Chen W, Zhang J, Wang C (2016). J Polym Res 23:73
Hu D, Chen K, Zou G, Zhang Q (2012). J Polym Res 19:9983
Li L, Smitthipong W, Zeng H (2015). Polym Chem 6:353
Chollakup R, Smitthipong W, Chworos A (2010). Polym Chem 1:658
Chollakup R, Smitthipong W, Eisenbach CD, Tirrell (2010). Macromolecules 43(5):2518
Peters GM, Davis JT (2016). Chem Soc Rev. https://doi.org/10.1039/c6cs00183a
Liu L, Xia D, Klausen LH, Dong M (2014). Int J Mol Sci 15(2):1901
Koltover I, Salditt T, Rädler JO, Safinya CR (1998). Science 281(5373):78
Vinogradova OI, Lebedeva OV, Vasilev K, Gong H, Garcia-Turiel J, Kim BS (2005). Biomacromolecules 6(3):1495
Hoshino Y, Tajima S, Nakayama H, Okahata Y (2002). Macromol Rapid Commun 23:253
Inoue Y, Fukushima T, Hayakawa T, Takeuchi H, Kaminishi H, Miyazaki K, Okahata Y (2003). J Biomed Mater Res A 65A:204
Smitthipong W, Chworos A, Lin B, Neumann T, Gajiria S, Jaeger L, Tirrell M (2008) Mater Res Soc Symp Proc 1094 paper number 1094-DD06-05
Kang M, Kim H, Leal C (2016). Curr Opin Colloid Interface Sci. https://doi.org/10.1016/j.cocis.2016.09.006
Smitthipong W, Neumann T, Chworos A, Jaeger L, Tirrell M (2008). Macromol Symp 264:13
Neumann T, Gajria S, Bouxsein NF, Jaeger L, Tirrel M (2010). J Am Chem Soc 132(20):7025
Smitthipong W, Neumann T, Gajria S, Li Y, Chworos A, Jaeger L, Tirrell M (2009). Biomacromolecules 10:221
Okahata Y, Kawasaki T (2005). Top Curr Chem 260:57
Schmidt SW, Kersch A, Beyer MK, Clausen-Schaumann H (2011). Phys Chem Chem Phys 13:5994
Li Y, Nese A, Matyjaszewski K, Sheiko SS (2013). Macromolecules 46(18):7196
Chollakup R, Smitthipong W, Chworos A (2014). RSC Adv 4(58):30648
Chollakup R, Smitthipong W (2012). Polym Chem 3:2350
Chollakup R, Smitthipong W, Chworos A (2013). RSC Adv 3:4745
Acknowledgements
This work is supported by Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Thailand. The authors would like to gratefully acknowledge Professor Matthew Tirrell from University of Chicago for all the supports.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pakornpadungsit, P., Smitthipong, W. & Chworos, A. Self-assembly nucleic acid-based biopolymers: learn from the nature. J Polym Res 25, 45 (2018). https://doi.org/10.1007/s10965-018-1441-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10965-018-1441-6