Skip to main content
Log in

Comparison study: effect of un-vulcanized and vulcanized NR content on the properties of two-matrix filled epoxy/natural rubber/graphene nano-platelets system

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper focus in comparing un-vulcanized and vulcanized NR as toughening agent in epoxy resin. The incorporation of graphene nano-platelets (GNP) into two-matrix system has yield conductive materials whilst maintained their polymeric characteristics. Filled systems were prepared via magnetic stirring method and dispersion of GNP in the filled systems using ultrasonic water bath. The aim of this study is to investigate the effect of NR content on physical, mechanical, thermal and electrical performances of un-vulcanized and vulcanized filled systems. There is a great improvement in mechanical properties of vulcanized filled systems as compared to un-vulcanized filled systems. The results showed that the addition of vulcanized NR content at 5 vol% has improved flexural strength, modulus and toughness by 41.28%, 11.9% and 36.26% as compared to un-vulcanized filled system, when comparing at the same NR content. This improvement is attributed to the semi-efficient vulcanization (semi-EV) has transformed soft-like NR phases into high elastic NR phases, at which small vulcanized NR phases acted as energy dissipating center that can bear higher applied load without chain slippage. The flexured and fractured surfaces of filled systems were investigated using scanning electron microscope (SEM) technique to determine particle sizes of NR phases and its toughening mechanism. The formation of more conductive pathways in the vulcanized filled systems was agreed by the XRD analysis. Vulcanized filled systems have higher cross-link density in which implied that vulcanized NR phases are resistant to chemical penetration and cannot be easily removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Sci-AAAS-Wkly Pap Ed 265:1212–1214

    CAS  Google Scholar 

  2. Hwang TY, Yoo Y, Lee JW (2012) Electrical conductivity, phase behaviour, and rheology of polypropylene/polystyrene blends with multi-walled carbon nanotube. Rheol Acta 51:623–636

    Article  CAS  Google Scholar 

  3. Gudarzi MM, Sharif F (2012) Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polym Lett 6:1017–1031

    Article  Google Scholar 

  4. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567

    Article  CAS  Google Scholar 

  5. Oskouyi AB, Mertiny P (2011) Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nano-disks. Procedia Eng 10:403–408

    Article  Google Scholar 

  6. Natsuki T, Endo M, Takahashi T (2005) Percolation study of oriented short-fiber composites by a continuum model. Physica A 352:498–508

    Article  Google Scholar 

  7. Li J, Kim JK (2007) Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos Sci Technol 67:2114–2120

    Article  CAS  Google Scholar 

  8. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  9. Tan SK, Ahmad S, Chia CH, Mamum A, Heim HP (2013) A comparison study of liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR) as the toughening agent for epoxy. American J Mater Sci 3:55–61

    Google Scholar 

  10. Qi B, Lu SR, Xiao XE, Pan LL, Tan FZ, Yu JH (2014) Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. Express Polym Lett 8:467–479

    Article  CAS  Google Scholar 

  11. Kim J, Yim BS, Kim JM, Kim J (2012) The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesive (ACAs). Microelectron Reliab 52:595–602

    Article  CAS  Google Scholar 

  12. Shen XJ, Pei XQ, Liu Y, Fu SY (2014) Tribological performance of carbon nanotube-graphene oxide hybrid/epoxy composites. Compos Part B 57:120–125

    Article  CAS  Google Scholar 

  13. Saleh AB, Ishak ZM, Hashim AS, Kamil WA, Ishiaku US (2014) Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Phys Procedia 55:129–137

    Article  CAS  Google Scholar 

  14. Huang Y, Kinloch AJ (1992) Modeling of the toughening mechanisms in rubber-modified epoxy polymers. J Mater Sci 27:2753–2762

    Article  CAS  Google Scholar 

  15. Paul DR, Bucknall CB (2000) Polymer blends: toughening of epoxies. John Wiley & Sons, Australia

    Google Scholar 

  16. Zhou H, Xu S (2014) A new method to prepare rubber toughened epoxy with high modulus and high impact strength. Mater Lett 121:238–240

    Article  CAS  Google Scholar 

  17. Chen J, Kinloch AJ, Sprenger S, Taylor AC (2013) The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 54:4276–4289

    Article  CAS  Google Scholar 

  18. Tan YT, Loh WL, Sumitha S, Lim MH, Ho SC, Kathirasan M (2009) Chemistry: Polymer. Oxford Fajar, Malaysia

    Google Scholar 

  19. Lu S, Ban J, Yu C, Deng W (2010) Properties of epoxy resins modified with liquid crystalline polyurethane. Iran Polym J 19:669–678

    CAS  Google Scholar 

  20. Shinohara H, Tiwari A (2015) Graphene: An introduction to the fundamentals and industrial application. John Wiley & Sons, Australia

    Google Scholar 

  21. Wei J, Vo T, Inam F (2015) Epoxy/graphene nanocomposites-processing and properties: a review. RSC Adv 5:73510–73524

    Article  CAS  Google Scholar 

  22. Du J, Cheng HM (2012) The fabrication, properties and uses of graphene/polymer composites. Macromol Chem Phys 213:1060–1077

    Article  CAS  Google Scholar 

  23. Diaz-Chacon L, Metz R, Dieudonné P, Bantignies JL, Tahir S, Hassanzadeh M, Sosa E, Atencio R (2015) Graphite nanoplatelets composite materials: role of the epoxy-system in the thermal conductivity. J Mater Sci Chem Eng 3:75–87

    CAS  Google Scholar 

  24. Kargarzadeh H, Ahmad I, Abdullah I (2017) Mechanical Properties of Epoxy/Rubber Blends. In: Parameswaranpillai J, Hameed N, Pionteck J, Woo E (eds) Handbook of Epoxy Blends. Springer, Cham

  25. Nair MR, Thomas GV, Nair MG (2007) Thermogravimetric analysis of PVC/ELNR blends. Polym Degrad Stab 92:189–196

    Article  CAS  Google Scholar 

  26. Kam KW, Teh PL, Husseninsyah S, Yeoh CK (2017) The effect of graphene and natural rubber content on mechanical and electrical conductivity properties of epoxy/natural rubber/graphene conductive materials. Mater Sci Forum 888:209–215

    Article  Google Scholar 

  27. Watt IM (1985) The Principles and Practice of Electron Microscopy. A basic, practical introduction to SEM and TEM. Cambridge University Press, New York

  28. Gaisford S, Kett V, Haines P (2016) Principles of thermal analysis and calorimetry. Royal Society of Chemistry, United of Kingdom

    Google Scholar 

  29. Mohamad N, Sharafina ZN, Ab Maulod HE, Yuhazri MY, Jeefferie AR (2013) Morphological and mechanical properties of polypropylene/epoxidized natural rubber thermoplastic vulcanizates treated with maleic anhydride-grafted polypropylene. Int J Automot Mech Eng (IJAME) 8:1305–1315

    Article  Google Scholar 

  30. Nakason C, Worlee A, Salaeh S (2008) Effect of vulcanization systems on properties and recyclability of dynamically cured epoxidized natural rubber/ polypropylene blends. Polym Test 27:858–869

    Article  CAS  Google Scholar 

  31. Sankar HR, Srikant RR, Krishna PV, Rao VB, Babu PB (2013) Estimation of dynamic properties of epoxy glass fabric composites with natural rubber particle inclusions. Int J Automot Mech Eng 7:968–980

    Article  Google Scholar 

  32. Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828–3844

    Article  CAS  Google Scholar 

  33. Hong SG, Chan CK (2004) The curing behaviours of the epoxy/dicyanamide system modified with epoxidized natural rubber. Thermochim Acta 417:99–106

    Article  CAS  Google Scholar 

  34. Barcia FL, Amaral TP, Soares BG (2003) Synthesis and properties of epoxy resin modified with epoxy-terminated liquid polybutadiene. Polymer 44:5811–5819

    Article  CAS  Google Scholar 

  35. Mathew VS, Sinturel C, George SC, Thomas S (2010) Epoxy resin/liquid natural rubber system: secondary phase separation and its impact on mechanical properties. J Mater Sci 45:1769–1781

    Article  CAS  Google Scholar 

  36. Kumar KD, Kothandaraman B (2008) Modification of (DGEBA) epoxy resin with maleated depolymerized natural rubber. Express Polym Lett 2:302–311

    Article  CAS  Google Scholar 

  37. Cha YH, Kim KS, Kim DJ (1998) Evaluation on the fracture toughness and strength of fiber reinforced brittle matrix composite. J Mech Sci Technol 12:370–379

    Google Scholar 

  38. Chatterjee S, Wang JW, Kuo WS, Tai NH, Salzmann C, Li WL, Rebecca Hollertz R, Nuesch FA, Chu BTT (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    Article  CAS  Google Scholar 

  39. Yew GH, Yusof AM, Ishak ZM, Ishiaku US (2005) Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500

    Article  CAS  Google Scholar 

  40. Sharif NFA, Mohamad Z, Hassan A, Wahit MU (2012) Novel epoxidized natural rubber toughened polyamide 6/halloysite nanotubes nanocomposites. J Polym Res 19:9749–9759

    Article  Google Scholar 

  41. Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38:251–264

    Article  CAS  Google Scholar 

  42. Thomas R, Yumei D, Yuelong H, Le Y, Moldenaers P, Weimin Y, Czigany T, Thomas S (2008) Miscibility, morphology, thermal and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278–294

    Article  Google Scholar 

  43. Silva MJD, Sanches AO, Malmonge LF, Malmonge JA (2014) Electrical, mechanical and thermal analysis of natural rubber/polyaniline-Dbsa composite. Mater Res 17:59–63

    Article  Google Scholar 

  44. Grassie N, Guy MI, Tennent NH (1986) Degradation of epoxy polymers: part 4-thermal degradation of bisphenol-A diglycidyl ether cured with ethylene diamine. Polym Degrad Stab 14:125–137

    Article  CAS  Google Scholar 

  45. Wang D, Zhang X, Zha JW, Zhao J, Dang ZM, Hu GH (2013) Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54:1916–1922

    Article  CAS  Google Scholar 

  46. Ho MW, Lam CK, Lau KT, Ng DH, Hui D (2006) Mechanical properties of epoxy-based composites using nanoclays. Compos Struct 75:415–421

    Article  Google Scholar 

  47. Kasim FA, Mahdi MA, Hassan JJ, Al-Ani SKJ, Kasim SJ (2012) Preparation and optical properties of CdS/epoxy nanocomposites. Int J Nanoelectron Mater 5:57–66

    Google Scholar 

  48. Arshad MA, Maaroufi A, Benavente R, Pinto G (2014) Kinetics of the thermal decomposition mechanisms of conducting and non-conducting epoxy/Al composites. J Mater Environ Sci 5:1342–1354

    Google Scholar 

  49. Moghaddam SZ, Sabury S, Sharif F (2014) Dispersion of rGO in polymeric matrices by tnermodynamically favourable self-assembly of GO at oil-water interfaces. RSC Adv 4:8711–8719

    Article  CAS  Google Scholar 

  50. Khanam PN, Ponnamma D, Al-Madeed MA (2015) Electrical properties of graphene polymer nanocomposites. In Grapheme-based polymer nanocomposites in electronics. Springer International Publishing, Switzerland

    Google Scholar 

  51. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Fundamental Research Grant Scheme (FRGS) grant no: 9003-00472 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Wei Kam.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kam, KW., Teh, PL., Osman, H. et al. Comparison study: effect of un-vulcanized and vulcanized NR content on the properties of two-matrix filled epoxy/natural rubber/graphene nano-platelets system. J Polym Res 25, 15 (2018). https://doi.org/10.1007/s10965-017-1418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1418-x

Keywords

Navigation