Skip to main content
Log in

Pyrolysis kinetic of alkaline and dealkaline lignin using catalyst

Journal of Polymer Research Aims and scope Submit manuscript

Cite this article

Abstract

Catalytic pyrolysis process is promising method to degrade lignin using catalyst in the absence of oxygen. This study used spent catalyst to degrade lignin using slow and fast catalytic pyrolysis method. The yield of liquid, gas and solid of product of depolymerization lignin using fast catalytic pyrolysis were 25.4%, 25.2% and 49.3% respectively, with ratio of lignin to spent catalyst (1:4). For slow catalytic pyrolysis, those were 11.1%, 19.5% and 69.5%, respectively with temperature up to 300 °C. The kinetic and thermal behavior of alkaline and dealkaline lignin were investigated using thermogravimetric analysis and derivative thermogravimetry under nitrogen atmosphere. The dehydration of alkaline and dealkaline lignin with or without catalyst were investigated in the temperature range 210–400 °C. The apparent activation energies of alkaline lignin degradation with and without catalyst were 128 kJ/mol and 143 kJ/mol, respectively. The activation energies of dealkaline lignin with or without catalyst were 124 kJ/mol and 133 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Demirbas A (2001) Biomass resource facilities and biomass conversion processing fo fuels and chemicals. Energy Convers Manag 42(11):1357–1378

  2. Maldhure AV, Ekhe JD (2013) Pyrolysis of purified kraft lignin in the presence of AlCl3 and ZnCl2. J Environ Chem Eng 1(4):844–849

  3. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592

    Article  CAS  Google Scholar 

  4. Jain RK, Dixit AK, Janbade AV, Shukla N, Rajkumar. Lignin based waste biomass from paper mill- a potential substitute for replacing carbon black to produce green rubber product, http://pcra.org/pcra_adm/writereaddata/upload/files/CPPRI%20_Paper_Final.pdf. November 2017

  5. Watkins D et al (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4(1):26–32

    Article  CAS  Google Scholar 

  6. Radoykova T, Nenkova S, Valchev I (2013) Black liquor lignin products, isolation and characterization. Journal of Chemical Technology and Metallurgy 48(5):524–529

  7. Jongerius AL (2013) Catalytic conversion of lignin for the production of aromatics. dissertation, Utrecht University

  8. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod 20(2):131–141

  9. Zakzeski J et al (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599.

  10. Azadi P et al (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  11. Guo DL et al (2014) Effects of chemical form of sodium on the product characteristics of alkali lignin pyrolysis. Bioresour Technol 152:147–153

  12. Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498(1):61–66

  13. Li et al (2012) Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front Environ Sci Eng 6(3):295–303

  14. Deepa AK, Dhepe PL (2015) Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catal 5(1):365–379

    Article  CAS  Google Scholar 

  15. Chen F et al (2016) Sheet-like lignin particles as multifunctional fillers in polypropylene. ACS Sustain Chem Eng 4(9):4997–5004

  16. Brebu M, Cazacu G, Chirila O (2015) Pyrolysis of lignin - a potential method for obtaining chemical and/or fuels. Cellul Chem Technol: 45(1–2):43–50

  17. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

  18. Gumerov FM et al (2016) Regeneration of spent catalyst and impregnation of catalyst by supercritical fluid. International Journal of Analytical Mass Spectrometry and Chromatography 04(04):51–65

    Article  Google Scholar 

  19. Shieh FK et al (2013) Size-adjustable annular ring-functionalized mesoporous silica as effective and selective adsorbents for heavy metal ions. RSC Adv 3(48):25686–25689

  20. Subramanian B et al (2011) Regeneration of three-way automobile catalysts using biodegradable metal chelating agent--S, S-ethylenediamine disuccinic acid (S, S-EDDS). J Hazard Mater 186(2–3):999–1006

    Article  CAS  Google Scholar 

  21. Lee YC, Dutta S, Wu KCW (2014) Integrated, cascading enzyme−/Chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7(12):3241–3246

  22. Lesmana D, Wu HS (2015) Pyrolysis of waste oil in the presence of a spent catalyst. J Environ Chem Eng 3(4):2522–2527

  23. Argyle M, Bartholomew C (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5(1):145–269

    Article  CAS  Google Scholar 

  24. Ebrahimi-Kahrizsangi R, Abbasi MH (2008) Evaluation of reliability of coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Metals Soc China 18(1):217–221

    Article  CAS  Google Scholar 

  25. Fernandez A et al (2016) Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl Therm Eng 106:1157–1164

    Article  CAS  Google Scholar 

  26. Fagernäs L et al (2010) Drying of biomass for second generation synfuel production. Biomass Bioenergy 34(9):1267–1277

    Article  Google Scholar 

  27. Kovařík P (2017) Drying of biomass with high water content, in power engineering. Czech Technical University in Prague Prague. p 26

  28. Yao F et al (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98

    Article  CAS  Google Scholar 

  29. Reeb J, Michael R (1999) Moisture content by the oven - dry method for industrial testing. WDKA, Portland, 5:66–74

  30. Li K et al (2017) Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry. Bioresour Technol 234:48–52

    Article  CAS  Google Scholar 

  31. Lopez-Velazquez MA et al (2013) Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrolysis 99:170–177

    Article  CAS  Google Scholar 

  32. Faravelli T et al (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3):290–301

    Article  CAS  Google Scholar 

  33. Brebu M, Vasile C (2009) Thermal degradation of lignin-a review. Cellul Chem Technol 44(9):353–363

  34. Vamvuka D et al (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82(15):1949–1960

  35. Grønli M, Antal MJ, Varhegyi G (1999) A round - robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res 38(6):2238–2244

  36. Xue J et al (2017) Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis. Energy Convers Manag 142:143–152

    Article  CAS  Google Scholar 

  37. Ma Z et al (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag 89:251–259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the ministry of science and technology of Taiwan for financially supporting this research under grant numbers MOST 105-2218-E-155-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Shing Wu.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damayanti, Wu, H.S. Pyrolysis kinetic of alkaline and dealkaline lignin using catalyst. J Polym Res 25, 7 (2018). https://doi.org/10.1007/s10965-017-1401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1401-6

Keywords

Navigation