Advertisement

Influence of graphene on the non-isothermal crystallization kinetics of poly(vinyl alcohol)/starch composite

  • Osamah A. Bin-Dahman
  • Farrukh Shehzad
  • Mamdouh A. Al-Harthi
ORIGINAL PAPER

Abstract

Non-isothermal crystallization behavior of poly(vinyl alcohol)/starch and poly(vinyl alcohol)/starch/graphene nanocomposites was studied using differential scanning calorimetry (DSC). Ozawa and Mo models were used to analyze the non-isothermal kinetics. The differential Friedman method was used to evaluate the effective activation energy (E A ) of the nanocomposites. The data fits the Mo Model well in the investigated temperature range. Graphene nucleates the crystallization of the composites by increasing the crystallization onset temperature along with the lowering of E A . However, significant changes in the crystallization half-time were not observed, suggesting that the effect of graphene is more prominent at the nucleation stage.

Keywords

Non-isothermal crystallization Graphene Poly(vinyl alcohol)/starch Nanocomposites DSC 

References

  1. 1.
    Shi Y-H, Dou Q (2013) Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim 112:901–911.  https://doi.org/10.1007/s10973-012-2611-0 CrossRefGoogle Scholar
  2. 2.
    Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res - Part B Appl Biomater 100(B):1451–1457.  https://doi.org/10.1002/jbm.b.32694 CrossRefGoogle Scholar
  3. 3.
    Bin-Dahman OA, Jose J, Al-Harthi MA (2016) Effect of natural weather aging on the properties of poly(vinyl alcohol)/starch/graphenenanocomposite. Starch - Stärke.  https://doi.org/10.1002/star.201600005
  4. 4.
    Peppas NA, Merrill EW (1977) Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. J Biomed Mater Res 11:423–434.  https://doi.org/10.1002/jbm.820110309 CrossRefGoogle Scholar
  5. 5.
    Santos C, Silva CJ, Büttel Z et al (2014) Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr Polym 99:584–592.  https://doi.org/10.1016/j.carbpol.2013.09.008 CrossRefGoogle Scholar
  6. 6.
    Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical, and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membranes. Int J Polym Anal Charact 18:287–296.  https://doi.org/10.1080/1023666X.2013.767080 CrossRefGoogle Scholar
  7. 7.
    Peppas NA, Tennenhouse D (2004) Semicrystalline poly(vinyl alcohol) films and their blends with poly(acrylic acid) and poly(ethylene glycol) for drug delivery applications. J Drug Deliv Sci Technol 14:291–297.  https://doi.org/10.1016/S1773-2247(04)50050-3 CrossRefGoogle Scholar
  8. 8.
    Wang X, Yucel T, Lu Q et al (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31:1025–1035.  https://doi.org/10.1016/j.biomaterials.2009.11.002 CrossRefGoogle Scholar
  9. 9.
    Carbone K, Casarci M, Varrone M (1999) Crosslinked poly(vinyl alcohol) supports for the immobilization of a lipolytic enzyme. J Appl Polym Sci 74:1881–1889.  https://doi.org/10.1002/(SICI)1097-4628(19991121)74:8<1881::AID-APP1>3.0.CO;2-5 CrossRefGoogle Scholar
  10. 10.
    Kenawy ER, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372–380.  https://doi.org/10.1016/j.arabjc.2013.05.026 CrossRefGoogle Scholar
  11. 11.
    Pawde SM, Deshmukh K (2008) Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109:3431–3437.  https://doi.org/10.1002/app.28454 CrossRefGoogle Scholar
  12. 12.
    Costa LMM, de Olyveira GM, Cherian BM et al (2013) Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron Adstringens bark extract for medical applications. Ind Crop Prod 41:198–202.  https://doi.org/10.1016/j.indcrop.2012.04.025 CrossRefGoogle Scholar
  13. 13.
    Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628.  https://doi.org/10.1016/j.progpolymsci.2013.05.002 CrossRefGoogle Scholar
  14. 14.
    Chai WL, Chow JD, Chen CC (2012) Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends. J Polym Environ 20:550–564.  https://doi.org/10.1007/s10924-012-0419-4 CrossRefGoogle Scholar
  15. 15.
    Maiti M, Kaith BS, Jindal R, Jana AK (2010) Synthesis and characterization of corn starch based green composites reinforced with Saccharum Spontaneum L graft copolymers prepared under micro-wave and their effect on thermal, physio-chemical and mechanical properties. Polym Degrad Stab 95:1694–1703.  https://doi.org/10.1016/j.polymdegradstab.2010.05.024 CrossRefGoogle Scholar
  16. 16.
    Bin-Dahman OA, Jose J, Al-Harthi MA (2015) Compatibility of poly(acrylic acid)/starch blends. Starch/Staerke 67:1061–1069.  https://doi.org/10.1002/star.201500011 CrossRefGoogle Scholar
  17. 17.
    Sreekumar P, Al-Harthi MA, De S (2012) Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. J Compos Mater 46:3181–3187.  https://doi.org/10.1177/0021998312436998 CrossRefGoogle Scholar
  18. 18.
    Sreekumar PA, Al-Harthi MA, De SK (2012) Effect of glycerol on thermal and mechanical properties of polyvinyl alcohol/starch blends. J Appl Polym Sci 123:135–142.  https://doi.org/10.1002/app.34465 CrossRefGoogle Scholar
  19. 19.
    Sreekumar PA, Al-Harthi MA, De SK (2012) Studies on compatibility of biodegradable starch/polyvinyl alcohol blends. Polym Eng Sci 52:2167–2172.  https://doi.org/10.1002/pen.23178 CrossRefGoogle Scholar
  20. 20.
    Appu SP, De SK, Khan MJ, Al-Harthi MA (2013) Natural weather ageing of starch/polyvinyl alcohol blend: effect of glycerol content. J Polym Eng 33:257–263.  https://doi.org/10.1515/polyeng-2012-0048 Google Scholar
  21. 21.
    Jose J, De SK, Al Ma’adeed MAA et al (2015) Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch/Staerke 67:147–153.  https://doi.org/10.1002/star.201400074 CrossRefGoogle Scholar
  22. 22.
    Jose J, Al-Harthi MA, AlMa’adeed MAA et al (2015) Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend. J Appl Polym Sci 132:41827.  https://doi.org/10.1002/app.41827 CrossRefGoogle Scholar
  23. 23.
    Piorkowska E, Galeski A, Haudin JM (2006) Critical assessment of overall crystallization kinetics theories and predictions. Prog Polym Sci 31:549–575.  https://doi.org/10.1016/j.progpolymsci.2006.05.001 CrossRefGoogle Scholar
  24. 24.
    Huang H, Gu L, Ozaki Y (2006) Non-isothermal crystallization and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol). Polymer (Guildf) 47:3935–3945.  https://doi.org/10.1016/j.polymer.2006.03.089 CrossRefGoogle Scholar
  25. 25.
    Peng Z, Kong LX, Li SD (2005) Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite. Polymer (Guildf) 46:1949–1955.  https://doi.org/10.1016/j.polymer.2004.12.026 CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Du Z, Li H, Zhang C (2011) Preparation and crystallization behavior of multiwalled carbon nanotubes/poly(vinyl alcohol) nanocomposites. Polym Eng Sci 51:1770–1779.  https://doi.org/10.1002/pen.21964 CrossRefGoogle Scholar
  27. 27.
    Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer (Guildf) 45:4437–4443.  https://doi.org/10.1016/j.polymer.2004.04.031 CrossRefGoogle Scholar
  28. 28.
    Peng Z, Chen D (2006) Study on the nonisothermal crystallization behavior of poly(vinyl alcohol)/attapulgite nanocomposites by DSC analysis. J Polym Sci Part B Polym Phys 44:534–540.  https://doi.org/10.1002/polb.20719 CrossRefGoogle Scholar
  29. 29.
    Li C, Hou T, Vongsvivut J et al (2015) Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochim Acta 618:26–35.  https://doi.org/10.1016/j.tca.2015.09.009 CrossRefGoogle Scholar
  30. 30.
    Li C, Vongsvivut J, She X et al (2014) New insight into non-isothermal crystallization of PVA-graphene composites. Phys Chem Chem Phys 16:22145–22158.  https://doi.org/10.1039/c4cp03613a CrossRefGoogle Scholar
  31. 31.
    Lee S, Hong J-Y, Jang J (2013) The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym Int 62:901–908.  https://doi.org/10.1002/pi.4370 CrossRefGoogle Scholar
  32. 32.
    Hassanjani Roushan A, Omrani A, Motahari A, Rostami AA (2016) Influence of octasilane POSS on non-isothermal crystallization, thermal stability and conductivity of poly(vinyl alcohol) nanocomposite. Polym-Plast Technol Eng 55:268–277.  https://doi.org/10.1080/03602559.2015.1070870 CrossRefGoogle Scholar
  33. 33.
    Jang J, Lee DK (2003) Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol. Polymer (Guildf) 44:8139–8146.  https://doi.org/10.1016/j.polymer.2003.10.015 CrossRefGoogle Scholar
  34. 34.
    Bosq N, Guigo N, Persello J, Sbirrazzuoli N (2014) Melt and glass crystallization of PDMS and PDMS silica nanocomposites. Phys Chem Chem Phys 16:7830–7840.  https://doi.org/10.1039/c4cp00164h CrossRefGoogle Scholar
  35. 35.
    Shehzad F, Thomas SP, Al-Harthi MA (2014) Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in-situ polymerization. Thermochim Acta 589:226–234.  https://doi.org/10.1016/j.tca.2014.05.039 CrossRefGoogle Scholar
  36. 36.
    Li C, Dou Q, Bai Z, Lu Q (2015) Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim 122:407–417.  https://doi.org/10.1007/s10973-015-4677-y CrossRefGoogle Scholar
  37. 37.
    Pas SJ, Dargusch MS, MacFarlane DR et al (2011) Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal determination of the Avrami exponent. Phys Chem Chem Phys 13:12033.  https://doi.org/10.1039/c1cp00040c CrossRefGoogle Scholar
  38. 38.
    Daud M, Shehzad F, Al-Harthi MA (2015) Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania. Polym Bull 72:1233–1245.  https://doi.org/10.1007/s00289-015-1335-2 CrossRefGoogle Scholar
  39. 39.
    Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer (Guildf) 12:150–158.  https://doi.org/10.1016/0032-3861(71)90041-3 CrossRefGoogle Scholar
  40. 40.
    Avrami M (1939) Kinetics of phase change. I General Theory. J Chem Phys 7:1103.  https://doi.org/10.1063/1.1750380 CrossRefGoogle Scholar
  41. 41.
    Shi N, Dou Q (2015) Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim 119:635–642.  https://doi.org/10.1007/s10973-014-4162-z CrossRefGoogle Scholar
  42. 42.
    Liu T, Mo Z, Wang S, Zhang H (1997) Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK). Polym Eng Sci 37:568–575.  https://doi.org/10.1016/S0014-3057(97)00016-5 CrossRefGoogle Scholar
  43. 43.
    Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer (Guildf) 45:4953–4968.  https://doi.org/10.1016/j.polymer.2004.04.057 CrossRefGoogle Scholar
  44. 44.
    Chafidz A, Ali I, Ali Mohsin ME et al (2012) Atomic force microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites. J Polym Res 19:1–17.  https://doi.org/10.1007/s10965-012-9860-2 CrossRefGoogle Scholar
  45. 45.
    Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun 23:771–775.  https://doi.org/10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G CrossRefGoogle Scholar
  46. 46.
    Starink M (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176.  https://doi.org/10.1016/S0040-6031(03)00144-8 CrossRefGoogle Scholar
  47. 47.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp 6:183–195.  https://doi.org/10.1002/polc.5070060121 CrossRefGoogle Scholar
  48. 48.
    Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886.  https://doi.org/10.1246/bcsj.38.1881 CrossRefGoogle Scholar
  49. 49.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706.  https://doi.org/10.1021/ac60131a045 CrossRefGoogle Scholar
  50. 50.
    Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol 16:22–31Google Scholar
  51. 51.
    Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun 27:1515–1532.  https://doi.org/10.1002/marc.200600404 CrossRefGoogle Scholar
  52. 52.
    Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS (2013) Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta 553:40–48.  https://doi.org/10.1016/j.tca.2012.11.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKing Fahd University of Petroleum & MineralsDammamSaudi Arabia
  2. 2.Department of Chemical Engineering, Faculty of Engineering and PetroleumHadhramout UniversityMukallaYemen
  3. 3.Center of Research Excellence in NanotechnologyKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations