Advertisement

Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion

  • Zahid Hanif
  • Hyeonyeol Jeon
  • Thang Hong Tran
  • Jonggeon Jegal
  • Seul-A. Park
  • Seon-Mi Kim
  • Jeyoung Park
  • Sung Yeon Hwang
  • Dongyeop X. Oh
ORIGINAL PAPER
Part of the following topical collections:
  1. Topical Collection on Bio-Based Polymers

Abstract

The application potential of nanocellulose has been previously hindered by the costly and slow drying methods that this material requires, including freeze/supercritical drying process. The main issue for nanocellulose commercialization is how effectively and rapidly its high water contents (90–99%) can be removed, all of which raise its transportation and processing costs. Oven-drying is the fastest, most economical, and most scalable method for dehydrating nanocellulose, but causes strong interfibrillar aggregation and leads to poor aqueous re-dispersion. Here, we report that the problems of nanocellulose oven-drying are comprehensively overcome by adding tert-butanol (t-BuOH) to the nanocellulose solution at >90%. In a lab-scale comparison, the t-BuOH-mediated oven-drying of aqueous nanocellulose showed lower drying times by a factor of 2–12 compared to water only oven-drying and freeze drying of the same material. The dispersibility of this dried nanocellulose is as high as the never-dried material in terms of particle size, light transmittance, and sedimentation. t-BuOH reduces interfibrillar shrinkage due to the lower surface tension of t-BuOH compared to water, and a remaining t-BuOH/water mixture decreases interfibrillar adhesion and contact.

Graphical abstract

This paper suggests a strategy to improve the aqueous re-dispersibility of oven-dried nanocellulose, and to accelerate oven-drying rate.

Keywords

Nanocellulose Oven-drying Co-solvent Drying rate tert-Butanol Re-dispersion 

Notes

Acknowledgements

This work was financially supported by the Technology Innovation Program (10070150) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea), and partially supported by a grant from Research Center for Chemical Biotechnology of Korea Research Institute of Chemical Technology (SI 1709).

Author contributions

All authors have given approval to the final version of the manuscript. Z. H. and H. J. conducted the experiments. H. J., J. J., S. Y. H., J. P., and D. X. O. wrote the manuscript. S. P. and S. K. conducted supplementary experiments and literature survey.

Supplementary material

10965_2017_1343_MOESM1_ESM.pdf (771 kb)
ESM 1 (PDF 771 kb)

References

  1. 1.
    Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefGoogle Scholar
  2. 2.
    Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRefGoogle Scholar
  3. 3.
    Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by tempo-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  4. 4.
    Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly(vinyl alcohol) films. J Polym Res 20:210–216CrossRefGoogle Scholar
  5. 5.
    Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809CrossRefGoogle Scholar
  6. 6.
    Lu B, Lin F, Jiang X, Cheng J, Lu Q, Song J, Chen C, Huang B (2017) One-pot assembly of microfibrillated cellulose reinforced pva–borax hydrogels with self-healing and ph-responsive properties. ACS Sustain Chem Eng 5:948–956CrossRefGoogle Scholar
  7. 7.
    Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRefGoogle Scholar
  8. 8.
    Mi Q, Ma S, Yu J, He J, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660CrossRefGoogle Scholar
  9. 9.
    Nguyen HL, Jo YK, Cha M, Cha YJ, Yoon DK, Sanandiya ND, Prajatelistia E, Oh DX, Hwang DS (2016) Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity. Polymers (Basel) 8:102–114CrossRefGoogle Scholar
  10. 10.
    Thielemans W, Warbey CR, Walsh DA (2009) Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem 11:531–537CrossRefGoogle Scholar
  11. 11.
    Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049CrossRefGoogle Scholar
  12. 12.
    Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRefGoogle Scholar
  13. 13.
    Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494CrossRefGoogle Scholar
  14. 14.
    Ávila HM, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Müller R, Hendriks J, Rotter N, van Osch GJ, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133CrossRefGoogle Scholar
  15. 15.
    Lee DJ, Jangam S, Mujumdar AS (2013) Some recent advances in drying technologies to produce particulate solids. KONA Powder Part J 30:69–83CrossRefGoogle Scholar
  16. 16.
    Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 5:1967–1974CrossRefGoogle Scholar
  17. 17.
    Nakasaka Y, Yoshikawa T, Kawamata Y, Tago T, Sato S, Takanohashi T, Koyama Y, Masuda T (2017) Fractonation of degraded lignin by using a water/1-butanol mixture with a solid-acid catalyst: A potential sources of phenolic compounds. ChemCatChem 9:2875–2880CrossRefGoogle Scholar
  18. 18.
    Feng J, Hsieh Y-L (2014) Assembling and redispersibility of rice straw nanocellulose: Effect of tert-butanol. ACS Appl Mater Interfaces 6:20075–20084CrossRefGoogle Scholar
  19. 19.
    Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7:19809–19815CrossRefGoogle Scholar
  20. 20.
    Chen Y, Dutta S, K-W W (2014) Integrated, cascading enzyme−/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7:3241–3246CrossRefGoogle Scholar
  21. 21.
    Dutta S, K-W W (2014) Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16:4615–4626CrossRefGoogle Scholar
  22. 22.
    Dutta S, Bhaumik A, K-W W (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592CrossRefGoogle Scholar
  23. 23.
    Lee Y, Chen C, Chiu Y, K-W W (2013) An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5:2153–2157CrossRefGoogle Scholar
  24. 24.
    Alam MI, De S, Singh B, Saha B, Abu-Omar MM (2014) Titanium hydrogenphosphaste: An efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl Catal, A 486:42–48CrossRefGoogle Scholar
  25. 25.
    Jeong G, Ra CH, Hong Y, Kim JK, Song I, Kim S, Park D (2015) Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst Eng 38:207–217CrossRefGoogle Scholar
  26. 26.
    Kuo I, Suzuki N, Yamauchi Y, K-W W (2013) Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid suystems. RSC Adv 3:2028–2034CrossRefGoogle Scholar
  27. 27.
    Hsu W, Lee Y, Peng W, K-W W (2011) Cellulosic cenversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal Today 174:65–69CrossRefGoogle Scholar
  28. 28.
    Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392CrossRefGoogle Scholar
  29. 29.
    Scherer GW (1990) Theory of Drying. J Am Ceram Soc 73:3–14CrossRefGoogle Scholar
  30. 30.
    Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599CrossRefGoogle Scholar
  31. 31.
    Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. J Adhes Sci Technol 22:545–567CrossRefGoogle Scholar
  32. 32.
    Lewis L, Derakhshandeh M, Hatzikiriakos SG, Hamad WY, MacLachlan MJ (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules 17:2747–2754CrossRefGoogle Scholar
  33. 33.
    Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Asp 289:219–225CrossRefGoogle Scholar
  34. 34.
    Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85CrossRefGoogle Scholar
  35. 35.
    Agustin MB, Nakatsubo F, Yano H (2017) Improved resistance of chemically-modified nanocellulose against thermally-induced depolymerization. Carbohydr Polym 164:1–7CrossRefGoogle Scholar
  36. 36.
    Zhou S, Wang M, Chen X, Xu F (2015) Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng 3:3346–3354CrossRefGoogle Scholar
  37. 37.
    Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453CrossRefGoogle Scholar
  38. 38.
    Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832CrossRefGoogle Scholar
  39. 39.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nano 3:71–85Google Scholar
  40. 40.
    Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172CrossRefGoogle Scholar
  41. 41.
    Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322CrossRefGoogle Scholar
  42. 42.
    Kacuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203CrossRefGoogle Scholar
  43. 43.
    Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:4551–4560CrossRefGoogle Scholar
  44. 44.
    Tardy BL, Yokota S, Ago M, Xiang W, Kondo T, Bordes R, Rojas OJ (2017) Nanocellulose–surfactant interactions. Curr Opin Colloid Interface Sci 29:57–67CrossRefGoogle Scholar
  45. 45.
    Israelachvili J, Pashley RM (1984) Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J Colloid Interface Sci 98:500–514CrossRefGoogle Scholar
  46. 46.
    Faghihnejad A, Zeng H (2012) Hydrophobic interactions between polymer surfaces: using polystyrene as a model system. Soft Matter 8:2746–2759CrossRefGoogle Scholar
  47. 47.
    Lu Q, Danner E, Waite JH, Israelachvili JN, Zeng H, Hwang DS (2012) Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface 10:20120759CrossRefGoogle Scholar
  48. 48.
    Zeng H (2013) Polymer adhesion, friction, and lubrication. Wiley, HobokenCrossRefGoogle Scholar
  49. 49.
    Shi C, Cui X, Xie L, Liu Q, Chan DYC, Israelachvili JN, Zeng H (2015) Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 9:95–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)UlsanRepublic of Korea
  2. 2.Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)DaejeonRepublic of Korea

Personalised recommendations