Skip to main content
Log in

Research on methanol permeation of proton exchange membranes with incorporating ionic liquids

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Methanol permeation and conductivity of membrane materials are important factors to evaluate the feasibility of application as proton exchange membranes (PEMs) in direct methanol fuel cell (DMFC). The methanol permeation values of these composite membranes based on ionic liquids of trifluoroacetic propylamine (TFAPA) and the disubstituted imidazolium cations with different anions were summarized, and the methanol permeation behaviors were investigated in this work. Although these polymer/ionic liquid composite membranes displayed satisfactory conductivities, the relative selectivity values of conductivity to methanol permeability were lower than the value of Nafion® membrane. Moreover, polymerized ionic liquids (PILs) membranes showed the strong ability to hinder methanol permeation with a value around 10−11 cm2/s at 10 M methanol solution. The maximum relative selectivity value reached (2.23–1.76) × 106 S·s/cm3 for PVC-MIMCl membrane, which was near two orders of magnitude higher than the reported 2.47 × 104 S·s/cm3 for Nafion-117 membrane at 2 M methanol solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neves LA, Coelhoso IM, Crespo JG (2010) Methanol and gas crossover through modified Nafion membranes by incorporation of ionic liquid cations. J Membr Sci 360:363–370

    Article  CAS  Google Scholar 

  2. Lin HD, Sun WM, Zhao CJ, Na H (2013) Self-assembly of multiwall carbon nanotubes on sulfonated poly (arylene ether ketone) as a proton exchange membrane. J Polym Res 20:306

    Article  Google Scholar 

  3. Li PC, Liao GM, Kumar SR, Shih CM, Yang CC, Wang DM, Jessie Lue SJ (2016) Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly(vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim Acta 187:616–628

    Article  CAS  Google Scholar 

  4. Pulido Ayazo JC, Suleiman D (2012) Supercritical fluid processing of Nafion® membranes: methanol permeability and proton conductivity. J Appl Polym Sci 124:145–154

    Article  CAS  Google Scholar 

  5. Gao L, Kong TF, Guo GQ, Huo YP (2016) Proton conductive and low methanol permeable PVA-based zwitterionic membranes. Int J Hydrog Energy 41:20373–20384

    Article  CAS  Google Scholar 

  6. Gloukhovski R, Tsur Y, Freger V (2017) A Nafion-filled polycarbonate tack-etched cmposite mmbrane with ehanced slectivity for drect mthanol fel clls. Fuel Cell 17:56–66

    Article  CAS  Google Scholar 

  7. Martínez de Yuso MV, Cuberes MT, Romero V, Neves L, Coelhoso I, Crespo JG, Rodríguez-Castellón E, Benavente J (2014) Modification of a Nafion membrane by n-dodecyltrimethylammonium cation inclusion for potential application in DMFC. Int J Hydrog Energy 39:4023–4029

    Article  Google Scholar 

  8. Almeida TP, Miyazaki CM, Paganin VA, Ferreira M, Saeki MJ, Perez J, Riul Jr A (2014) PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion® membranes. Appl Surf Sci 323:7–12

    Article  CAS  Google Scholar 

  9. Parthiban V, Akula S, Peera SG, Islam N, Sahu AK (2016) Proton conducting Nafion-sulfonated graphene hybrid membranes for direct methanol fuel cells with reduced methanol crossover. Energ Fuel 30:725–734

    Article  CAS  Google Scholar 

  10. Li T, Zhong GM, Yang Y (2012) Methanol-blocking perfluorosulfonic acid composite membranes in direct methanol fuel cells. Prog Chem 22:522–536

    Google Scholar 

  11. Yang CW, Chen CC, Chen KH, Cheng S (2017) Effect of pore-directing agents in SBA-15 nanoparticles on the performance of Nafion®/SBA-15n composite membranes for DMFC. J Membr Sci 526:106–117

    Article  CAS  Google Scholar 

  12. Shen Y, Xi JY, Qiu XP, Zhu WT, Chen LQ (2007) PVDF-g-PSSA and SiO2 composite proton exchange membranes. Acta Chim Sin 65:1318–1324

    CAS  Google Scholar 

  13. Bahavan Palani P, Kannan R, Rajashabala S, Rajendran S, Velraj G (2015) Effect of nano-composite on polyvinyl alcohol-based proton conducting membrane for direct methanol fuel cell applications. Ionics 21:507–513

    Article  CAS  Google Scholar 

  14. Wu QX, Wang HN, Lu SF, Xu X, Liang DW, Xiang Y (2016) Novel methanol-blocking proton exchange membrane achieved via self-anchoring phosphotungstic acid into chitosan membrane with submicro-pores. J Membr Sci 500:203–210

    Article  CAS  Google Scholar 

  15. Wang SH, Lin HL (2014) Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells. J Power Sources 257:254–263

    Article  CAS  Google Scholar 

  16. Dutta K, Das S, Patit PK (2016) Highly methanol resistant and selective ternary blend membrane composed of sulfonated PVdF-co-HFP, sulfonated polyaniline and nafion. J Appl Polym Sci 133:43294

    Article  Google Scholar 

  17. Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411-412:35–44

    Article  CAS  Google Scholar 

  18. Mahajan CV, Ganesan V (2013) Influence of hydrogen bonding effects on methanol and water diffusivities in acid−base polymer blend membranes of sulfonated poly(ether ether ketone) and base tethered polysulfone. J Phys Chem B 117:5315–5329

    Article  CAS  Google Scholar 

  19. Li J, Cai WW, Ma LY, Zhang YF, Chen ZX, Cheng HS (2015) Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane. Chem Commun 51:6556–6559

    Article  CAS  Google Scholar 

  20. Mondal S, Soam S, Kundu PP (2015) Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: Effect of dip-coating of a blend of sulphonated PVdF-co-HFP and PBI. J Membr Sci 474:140–147

    Article  CAS  Google Scholar 

  21. Kim JH, Kim SK, Nam K, Kim DW (2012) Composite proton conducting membranes based on Nafion and sulfonated SiO2 nanoparticles. J Membr Sci 415-416:696–701

    Article  CAS  Google Scholar 

  22. De Bonis C, Cozzi D, Mecheri B, D’Epifanio A, Rainer A, De Porcellinis D, Licoccia S (2014) Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochim Acta 147:418–425

    Article  Google Scholar 

  23. Guzmán C, Alvarez A, Godínez LA, Ledesma-García J, Arriaga LG (2012) Evaluation of ZrO2 composite membrane operating at high temperature (100 °C) in direct methanol fuel cells. Int J Electrochem Sci 7:6106–6117

    Google Scholar 

  24. Arbizzani C, Donnadio A, Pica M, Sganappa M, Varzi A, Casciolab M, Mastragostino M (2010) Methanol permeability and performance of Nafion–zirconium phosphate composite membranes in active and passive direct methanol fuel cells. J Power Sources 195:7751–7756

    Article  CAS  Google Scholar 

  25. Cui YH, Baker AP, Xu X, Xiang Y, Wang L, Lavorgna M, Wu JW (2015) Enhancement of Nafion based membranes for direct methanol fuel cell applications through the inclusion of ammonium-X zeolite fillers. J Power Sources 294:369–376

    Article  CAS  Google Scholar 

  26. Escudero-Cid R, Montiel M, Sotomayor L, Loureiro B, Fatás E, Ocón P (2015) Evaluation of polyaniline-Nafion® composite membranes for direct methanol fuel cells durability tests. Int J Hydrog Energy 40:8182–8192

    Article  CAS  Google Scholar 

  27. Welton T (1999) Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  28. Che QT, Chen N, Yu JM, Cheng SC (2016) Sulfonated poly(ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes. Solid State Ionics 289:199–206

    Article  CAS  Google Scholar 

  29. Le Bideau J, Viau L, Vioux A (2011) Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 42:907–925

    Article  Google Scholar 

  30. Tseng LC, Kuo M, Lee RH (2016) An imidazolium iodide-containing hyperbranched polymer ionic liquid that improves the performance of dye-sensitized solar cells. J Polym Res 23:157

    Article  Google Scholar 

  31. Zhao ZP, Zhou ZP, Zhong MQ (2015) Electrochemical properties of imidazole tetrafluoroborate ionic liquid grafted SPEEK proton exchange membrane doped by La2O3. Int J Electrochem Sci 10:5026–5035

    CAS  Google Scholar 

  32. Che QT, Sun BY, He RH (2008) Preparation and characterization of new anhydrous, conducting membranes based on composites of ionic liquid trifluoroacetic propylamine and polymers of sulfonated poly (ether ether) ketone or polyvinylidenefluoride. Electrochim Acta 53:4428–4434

    Article  CAS  Google Scholar 

  33. Che QT, He RH, Yang JS, Feng L, Savinell RF (2010) Phosphoric acid doped high temperature proton exchange membranes based on sulfonated polyetheretherketone incorporated with ionic liquids. Electrochem Commun 12:647–649

    Article  CAS  Google Scholar 

  34. Che QT, Zhou L, Wang JL (2015) Fabrication and characterization of phosphoric acid doped imidazoliumionic liquid polymer composite membranes. J Mol Liq 206:10–18

    Article  CAS  Google Scholar 

  35. Che QT, Zhu ZF, Chen N, Zhai X (2015) Methylimidazolium group-modified polyvinyl chloride (PVC) doped with phosphoric acid for high temperature proton exchange membranes. Mater Design 87:1047–1055

    Article  CAS  Google Scholar 

  36. Tang JK, Wan LQ, Zhou Y, Ye LY, Zhou XH, Huang FR (2017) Synthesis and performance study of a novel sulfonated polytriazole proton exchange membrane. J Solid State Electrochem 21:725–734

    Article  CAS  Google Scholar 

  37. Xu D, Xu JM, Wang XQ, Wang Z (2016) Excellent performance of resistance methanol of a novel sulfonated poly (aryl ether ketone sulfone)/poly (vinylalcohol) composite membrane for direct methanol fuel cell applications. Int J Hydrog Energy 41:20536–20548

    Article  CAS  Google Scholar 

  38. Xu GX, Li J, Ma LY, Xiong J, Mansoor M, Cai WW, Cheng HS (2017) Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler. J Membr Sci 534:68–72

    Article  CAS  Google Scholar 

  39. Chi NTQ, Bae B, Kim D (2013) Electro-osmotic drag effect on the methanol permeation for sulfonated poly(ether ether ketone) and Nafion117 membranes. J Nanosci Nanotechnol 13:7529–7534

    Article  Google Scholar 

  40. Ayazo JCP, Suleiman D (2012) Supercritical fluid processing of Nafion (R) membranes: Methanol permeability and proton conductivity. J Appl Polym Sci 124:145–154

    Article  Google Scholar 

  41. Paneri A, Heo Y, Ehlert G, Cottrill A, Sodano H, Pintauro P, Moghaddam S (2014) Proton selective ionic graphene-based membrane for high concentration direct methanol fuel cells. J Membr Sci 467:217–225

    Article  CAS  Google Scholar 

  42. Dang HS, Kim D (2012) Cross-linked poly(arylene ether ketone) electrolyte membranes with enhanced proton conduction for fuel cells. Int J Hydrog Energy 37:19007–19016

    Article  CAS  Google Scholar 

  43. Li L, Zhang J, Wang YX (2003) Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell. J Membr Sci 226:159–167

    Article  CAS  Google Scholar 

  44. Wei YS, Shen LB, Wang ZM, Yang WD, Zhu H, Liu HT (2011) A novel membrane for DMFC -Na2Ti3O7 nanotubes/Nafion® composite membrane. Int J Hydrog Energy 36:5088–5095

    Article  CAS  Google Scholar 

  45. Sekhon SS, Park JS, Cho EK, Yoon YG, Kim CS, Lee WY (2009) Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids. Macromolecules 42:2054–2062

    Article  CAS  Google Scholar 

  46. Das S, Kumar P, Dutta K, Kundu PP (2014) Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell. Appl Energ 113:169–177

    Article  CAS  Google Scholar 

  47. Yuan JY, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482

    Article  CAS  Google Scholar 

  48. Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396

    Article  Google Scholar 

  49. Lemus J, Eguizábal A, Pina MP (2015) UV polymerization of room temperature ionic liquids for high temperature PEMs: Study of ionic moieties and crosslinking effects. Int J Hydrog Energy 40:5416–5424

    Article  CAS  Google Scholar 

  50. Jessie Lue SJ, Chen WW, Wu SY, Wang LD, Kuo CH (2008) Vapor permeation modeling of multi-component systems using a poly(dimethylsiloxane) membrane. J Membr Sci 311:380–389

    Article  Google Scholar 

  51. Li X, Roberts EPL, Holmes SM (2006) Evaluation of composite membranes for direct methanol fuel cells. J Power Sources 154:115–123

    Article  CAS  Google Scholar 

  52. Neelakandan S, Kanagaraj P, Sabarathinam RM, Nagendran A (2015) Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells. Appl Surf Sci 359:272–279

    Article  CAS  Google Scholar 

  53. Mack F, Aniol K, Ellwein C, Kerres J, Zeis R (2015) Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. J Mater Chem A 3:10864–10874

    Article  CAS  Google Scholar 

  54. Yue ZY, Cai YB, Xu SA (2016) Phosphoric acid-doped cross-linked sulfonated poly (imide-benzimidazole) for proton exchange membrane fuel cell applications. J Membr Sci 501:220–227

    Article  CAS  Google Scholar 

  55. Aili D, Hansen MK, Pan C, Li QF, Christensen E, Jensen JO, Bjerrum NJ (2011) Phosphoric acid doped membranes based on Nafion (R), PBI and their blends - Membrane preparation, characterization and steam electrolysis testing. Int J Hydrogen Energ 36:6985–6993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial supports by the Scientific Research Fund of Liaoning Provincial Education Department (L20150166), China Scholarship Council (201208210023), the Scientific Research Fund of Liaoning Provincial Education Department (L2013153), Fundamental Research Funds for the Doctoral of Liaoning Provincial Natural Science Foundation (20141126), Science and Technology Development Fund Project of Fushun city (20141115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quantong Che.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Q., Liu, L., Li, Z. et al. Research on methanol permeation of proton exchange membranes with incorporating ionic liquids. J Polym Res 24, 172 (2017). https://doi.org/10.1007/s10965-017-1331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1331-3

Keywords

Navigation