Skip to main content

Copolymers of ε-caprolactam and polypropylene oxide via anionic polymerization: synthesis and properties

Abstract

Copolymers with an elastic polypropylene oxide (PPO), middle block in the main chain of poly(ε-caprolactam) were synthesized via activated anionic ring opening polymerization of ε-caprolactam (CL) in the presence of a basic initiator sodium salt of CL (Na-CL) and effective bifunctional polymeric activators (PACs). By varyng the molecular weight, two types of PACs were synthesized based on carbamoyl derivatives of hydroxyl terminated PPO with isophorone diisocyanate and were blocked with CL. The formation of copolymers has been confirmed by proton nuclear magnetic resonance spectroscopy (1H–NMR) and Fourier transform infrared spectroscopy (FT-IR). The influence of the molecular weight of the PACs, the CL/PAC ratio and polymerization conditions on the conversion, intrinsic viscosity and polymerization kinetics, was investigated. The calorimetric, wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), notched impact test and dynamic mechanical thermal analysis (DMTA) were performed to estimate the influence of the composition ratio and the type of PACs on the physical, thermal, and mechanical properties of the copolymers. The use of the synthesized PACs reduced the polymerization time to several minutes. The copolymers showed improved impact resistance up to more than two times higher than those of the polyamide 6 (PA-6) homopolymer, without significant changes in their high melting temperatures.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Udipi K, Dave R, Kruse R, Stebbins L (1997) Polyamides from lactams via anionic ring-opening polymerization: 1. Chemistry and some recent findings. Polymer 38(4):927–938

    CAS  Article  Google Scholar 

  2. Allen WT, Eaves DE (1977) Caprolactam based block copolymers using polymeric activators. Angew Makromol Chem 58:321–343

    Article  Google Scholar 

  3. Boscoletto A, Trezza G, Andreis B, Milan L, Tavan M, Furlan P (1992) Anionic polyamides modified with poly(Oxypropylene) by "one-shot" RIM technology: structural and morphological characterization. Macromolecules 25:5752–5758

    Article  Google Scholar 

  4. Chen Y, Chen SA (1993) Bulk anionic copolymerization of ε-caprolactam in the presence of macroactivators derived from polypropylene glycol. J Appl Polym Sci 47:1721–1729

    CAS  Article  Google Scholar 

  5. Sakurai K, Amador G, Takahashi T (1998) Block copolymers based on nylon 6 and poly(propylene glycol). I. Structure and Thermal Properties. Polymer 39(17):4089–4094

    CAS  Article  Google Scholar 

  6. Stehlicek J, Sebenda J (1982) Block copolymers of ε-caprolactam and Oxirane prepared by the activated anionic polymerization of ε-caprolactam. Eur Polym J 18:535–540

    CAS  Article  Google Scholar 

  7. Yu YC, Jo WH (1994) Segmented block Copolyetheramides based on nylon 6 and Polyoxypropylene. I. Synthesis and Characterization. J Appl Polym Sci 54:585–591

    CAS  Article  Google Scholar 

  8. Yu YC, Jo WH (1995) Segmented block Copolyetheramides based on nylon 6 and Polyoxypropylene. II. Structure and Properties. J Appl Polym Sci 56:895–904

    CAS  Article  Google Scholar 

  9. Kyulavska M, Bryaskova R, Bozukova D, Mateva R (2014) Synthesis, structure and behavior of new polycaprolactam copolymers based on poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) macroactivators derived from Pluronic block copolymers. J Polym Res 21(471):1–14

    CAS  Google Scholar 

  10. Hergenrother W, Ambrose R (1974) Block polymers from Isocyanate-terminated intermediates. II. Preparation of Butadiene–ε-caprolactam and Styrene–ε-caprolactam Block Polymers. J Polym Sci, Polym Chem Ed 12:2613–2622

    CAS  Article  Google Scholar 

  11. Novakova V, Sobotik R, Matenova J, Roda J (1996) Polymerization of lactams, 87. Block copolymers of poly(ε-caprolactam) and Polybutadiene prepared by anionic polymerization. Part I: preparation and properties. Angew Makromol Chem 237:123–141

    CAS  Article  Google Scholar 

  12. Petit D, Jerome R, Teyssie P (1979) Anionic block copolymerization of ε-caprolactam. J Polym Sci: Polym Chem Ed 17:2903–2916

    CAS  Google Scholar 

  13. Sobotik R, Strubar R, Roda J (1997) Polymerization of lactams, 88. Copolymers poly(ε-Caprolactam)-Block-Polybutadiene prepared by anionic polymerization, part III. Model polymerizations initiated with potassium salt of ε-caprolactam and accelerated with Isocyanates and their derivatives. Macromol Chem Phys 198:1147–1163

    CAS  Article  Google Scholar 

  14. Deng X, Liu A, Wang J, Yang J, Li D (2010) Synthesis and characterization of three-arm polyamide 6-polyurethane block copolymer by monomer casting process. Mater Des 31(6):2776–2783

    CAS  Article  Google Scholar 

  15. Seo SW, Ha SW (1993) Synthesis and characterization of poly(ether urethane)-nylon 6 block copolymer. J Appl Polym Sci 48:833–843

    CAS  Article  Google Scholar 

  16. Stehlicek J, Chauhan G, Znasikowa M (1992) Preparation of polymeric initiators of the anionic polymerization of lactams from Polyetherdiols. J Appl Polym Sci 46:2169–2175

    CAS  Article  Google Scholar 

  17. Kim BJ, White JL (2003) Continuous polymerization of lactam–lactone block copolymers in a twin-screw extruder. J. Appl Polym Sci 88:1429–1437

    CAS  Article  Google Scholar 

  18. Toncheva N, Jerome R, Mateva R (2011) Anionically prepared poly(ε-caprolactam-co-ε-caprolactone) and poly(ε-caprolactam-co-δ-valerolactone) copolymers: thermal and mechanical properties. Eur Polym J 47(2):238–247

    CAS  Article  Google Scholar 

  19. Rusu G, Rusu E (2013) Evaluation of thermal and mechanical behavior of some anionic polyesteramide copolymers. J Polym Res 20:308

    Article  Google Scholar 

  20. Malinová L, Stolinová M, Lubasová D, Martinová L, Brozěk J (2013) Electrospinning of polyesteramides based on ε-caprolactam and ε-caprolactone from solution. Eur Polym J 49:3135–3143

    Article  Google Scholar 

  21. Stehlicek J, Sebenda J (1977) Block copolymers polycaprolactam-polystyrene-polycaprolactam prepared by the anionic polymerization of caprolactam. Eur Polym J 13:949–954

    CAS  Article  Google Scholar 

  22. Petrov P, Jankova K, Mateva R (2003) Polyamide-6-b-polybutadiene block copolymers: synthesis and properties. J Appl Polym Sci 89:711–717

    CAS  Article  Google Scholar 

  23. Kr Z, Bozukova D, Mateva R (2005) Anionic block copolymerization of hexanelactam and dodecalactam in the presence of a polymeric activator. J Univ Chem Technol Met (Sofia) 40(1):19–24

    Google Scholar 

  24. Mateva R, Kr Z, Zamfirova G, Díaz-Calleja R, Garcia-Bernabé A (2010) Effects of different composition ratio on the dielectric relaxation and dynamic mechanical properties of poly(ω-dodecalactam-co-ε-caprolactam-co-propylene oxide) copolymers. J Polym Sci B Polym Phys 48:2518–2529

    CAS  Article  Google Scholar 

  25. Coleman M, Lee K, Skrovanek D, Painter P (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19(8):2149–2157

    CAS  Article  Google Scholar 

  26. Senich G, MacKnight W (1980) Fourier transform infrared thermal analysis of a segmented polyurethane. Macromolecules 13(1):106–110

    CAS  Article  Google Scholar 

  27. Skrovanek D, Painter P, Coleman M (1986) Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules 19(3):699–705

    CAS  Article  Google Scholar 

  28. Tanaka T, Yokoyama T, Yamaguchi Y (1968) Quantitative study on hydrogen bonding between urethane compound and ethers by infrared spectroscopy. J Polym Sci part A-1 Polym Chem 6:2137–2152

  29. Brozek J, Marek M, Roda J, Kralicek J (1988) Polymerization of lactams, 81.Anionic polymerization of lactams accelerated with N-iminolactams, 2 ε-caprolactam (6-hexanelactam). Macromol Chem 189:17–27

    CAS  Article  Google Scholar 

  30. Dimitrov P, Rangelov S, Dworak A, Tsvetanov Ch B (2004) Synthesis and associating properties of poly(ethoxyethylglycidyl ether)/poly(propylene oxide) triblock copolymers. Macromolecules 37:1000–1008

    CAS  Article  Google Scholar 

  31. Gardlund ZG, Bator MA (1990) In situ polymerization of nylon–polyurea block copolymers. I. Synthesis and characterization. J Appl Polym Sci 40:2027–2035

    CAS  Article  Google Scholar 

  32. Sebenda J (1968) Alkaline polymerization of caprolactam. XXIX. Mechanism of chain growth in anionic lactam polymerization. J Polym Sci Part C Polym Symp 23:169–174

    Article  Google Scholar 

  33. Toncheva-Moncheva N, Jerome R, Mateva R (2016) Impact of the structure of poly(ε-caprolactam) containing polyesteramides on mechanical properties and biodegradation. Polym Degrad Stab 123:170–177

    CAS  Article  Google Scholar 

  34. Ghosh S, Khastgir D, Bhowmick AK (1998) Effect of block molecular weight on the mechanical and dynamic mechanical properties of segmented polyamide. Polymer 39(17):3967–3975

    CAS  Article  Google Scholar 

  35. Petrov P, Gancheva V, Philipova T, Velichkova R, Mateva R (2000) Synthesis of nylon-6 triblock copolymers with bifunctional polymeric activators. J Polym Sci A Polym Chem 38:4154–4164

    CAS  Article  Google Scholar 

  36. Sekiguchi H (1982) In: Evin KJ, Saegusa T (eds) In ring- opening polymerization, vol 2. London, Elsevier,

    Google Scholar 

  37. Gancheva V, Petrov P, Vladimirov N, Velichkova R, Mateva R (2008) Side reactions in the synthesis of triblock copolymers of nylon-6 with telechelic oligomers. Polym Int 57:1075–1078

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors cordially thank the Center for Education and Research on Macromolecules (CERM) at the University of Liege (Belgium) for kindly providing access to their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kr. Zhilkova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhilkova, K., Mateva, R. & Kyulavska, M. Copolymers of ε-caprolactam and polypropylene oxide via anionic polymerization: synthesis and properties. J Polym Res 24, 162 (2017). https://doi.org/10.1007/s10965-017-1324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1324-2

Keywords

  • Anionic polymerization
  • Polyamides
  • Copolymerization
  • ε-Caprolactam
  • Polymeric activators