Skip to main content
Log in

Disperse-within-disperse patterning on ternary/binary mixed-brush single crystals using polyaniline, polystyrene and poly(methyl methacrylate) grafts

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Novel binary rod-coil and ternary rod-coil-coil mixed-brushes were designed using poly(ethylene glycol) (PEG)-b-poly(styrene) (PS), PEG-b-poly(methyl methacrylate) (PMMA), and PEG-b-polyaniline (PANI) block copolymers. In the current rod-coil mixed-brushes, the brush osmotic pressure did not absolutely affect the surface morphology, instead, the rigidity or flexibility of brushes was a dominant factor. The flexibility of coily PS brushes caused them to be easily entered into the system compared to the rod brushes with higher osmotic pressure, thereby they composed the matrix phase. In a similar growth condition but with packed pancake PMMA brushes, a more faise osmotic pressure was detected for PANI nanorods in the vicinity of PMMA brushes compared to PS ones. A higher faise osmotic pressure for PANI nanorods reflected the lower diameter dispersity and population of PANI nanorods in PEG-b-PMMA/PEG-b-PANI compared to PEG-b-PS/PEG-b-PANI. Via enhancing the amorphous brushes molecular weight, in a constant PANI nanorods molecular weight, the diameter dispersity and population of PANI nanorods increased. The PANI nanorods diameter in binary PS/PANI and PMMA/PANI mixed-brushes ranged in 6–10 nm. With elevating the crystallization temperature, no changes were detected in the morphology of rod-coil mixed-brush single crystals. In the novel ternary mixed-brushes with the amorphous PS and PMMA brushes and the PANI nanorods, the PANI nanorods were dispersed within both matrix (PS) and disperse (PMMA) phases. In these systems, the PANI diameters were 6 and 7 nm in PMMA disperses and 6–9 nm in PS matrix phase. The overall PANI nanorods population was in the range of 594–1392 for binary mixed-brushes. Furthermore, in ternary structures, the PANI overall populations were about 222 and 316 in PMMA and PS phases, respectively. Generally, in all binary and ternary mixed-brush systems, the amorphous brushes (PS and PMMA), due to their flexibility could be arranged in the vicinity of each other in a more facile manner compared to the PANI nanorods, they thus developed matrix phase.

The mixed-brush single crystals were carefully patterned with double rod-coil and triple rod-coil-coil grafted polymer chains

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Advincula RC, Brittain WJ, Caster KC, Ruhe J (2004) Polymer brushes. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

    Book  Google Scholar 

  2. Ionov L, Sidorenko A, Stamm M, Minko S, Zdyrko B, Klep V, Luzinov I (2004) Gradient mixed brushes: “Grafting to” approach. Macromolecules 37:7421–7423

    Article  CAS  Google Scholar 

  3. Aulich D, Hoy O, Luzinov I, Eichhorn K-J, Stamm M, Gensch M, Schade U, Esser N, Hinrichs K (2010) In-situ IR synchrotron mapping ellipsometry on stimuli-responsive PAA-b-PS/PEG mixed polymer brushes. Phys Status Solidi C 7:197–199

    Article  CAS  Google Scholar 

  4. Motornov M, Sheparovych R, Katz E, Minko S (2008) Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush. ACS Nano 2:41–52

    Article  CAS  Google Scholar 

  5. Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698

    Article  CAS  Google Scholar 

  6. Minko S (2006) Responsive polymer brushes. J Macromol Sci Polym Rev 46:397–420

    Article  CAS  Google Scholar 

  7. Ochsmann JW, Lenz S, Lellig P, Emmerling SGJ, Golriz AA, Reichert P, You J, Perlich J, Roth SV, Berger R, Gutmann JS (2012) Stress-structure correlation in PS–PMMA mixed polymer brushes. Macromolecules 45:3129–3136

    Article  CAS  Google Scholar 

  8. Estillore NC, Advincula RC (2011) Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP. Langmuir 27:5997–6008

    Article  CAS  Google Scholar 

  9. Uhlmann P, Merlitz H, Sommer J-U, Stamm M (2009) Polymer brushes for surface tuning. Macromol Rapid Commun 30:732–740

    Article  CAS  Google Scholar 

  10. Liu Y, Klep V, Luzinov I (2009) Chapter 15: segregated polymer brushes via “Grafting to” and ATRP “Grafting from” chain anchoring. Controlled/living radical polymerization: progress in ATRP. American Chemical Society, Washington DC, p 215–230

  11. Ionov L, Minko S (2012) Mixed polymer brushes with locking switching. ACS Appl Mater Interfaces 4:483–489

    Article  CAS  Google Scholar 

  12. Abbaspoor S, Abbasi F, Agbolaghi S (2014) A novel approach to prepare polymer mixed-brushes via single crystal surface patterning. RSC Adv 4:17071–17082

    Article  CAS  Google Scholar 

  13. Zdyrko B, Luzinov I (2011) Polymer brushes by the “Grafting to” method. Macromol Rapid Commun 32:859–869

    Article  CAS  Google Scholar 

  14. Michielsen S, Lee HJ (2007) Design of a superhydrophobic surface using woven structures. Langmuir 23:6004–6010

    Article  CAS  Google Scholar 

  15. Reukov V, Vertegel A, Burtovyy O, Kornev K, Luzinov I, Miller P (2009) Fabrication of nanocoated fibers for self-diagnosis of bacterial vaginosis. Mater Sci Eng C 29:669–673

    Article  CAS  Google Scholar 

  16. Tsyalkovsky V, Burtovyy R, Klep V, Lupitskyy R, Motornov M, Minko S, Luzinov I (2010) Fluorescent nanoparticles stabilized by poly(ethylene glycol) containing shell for pH-triggered tunable aggregation in aqueous environment. Langmuir 26:10684–10692

    Article  CAS  Google Scholar 

  17. Sheparovych R, Motornov M, Minko S (2008) Adapting low-adhesive thin films from mixed polymer brushes. Langmuir 24:13828–13832

    Article  CAS  Google Scholar 

  18. Motornov M, Sheparovych R, Tokarev I, Roiter Y, Minko S (2007) Nonwettable thin films from hybrid polymer brushes can be hydrophilic. Langmuir 23:13–19

    Article  CAS  Google Scholar 

  19. LeMieux MC, Lin Y-H, Cuong PD, Ahn H-S, Zubarev ER, Tsukruk VV (2005) Microtribological and Nanomechanical properties of switchable Y-shaped amphiphilic polymer brushes. Adv Funct Mater 15:1529–1540

    Article  CAS  Google Scholar 

  20. Lin Y-H, Teng J, Zubarev ER, Shulha H, Tsukruk VV (2005) In-situ observation of switchable nanoscale topography for Y-shaped binary brushes in fluids. Nano Lett 5:491–495

    Article  CAS  Google Scholar 

  21. Wang X, Bohn PW (2007) Spatiotemporally controlled formation of two-component counterpropagating lateral graft density gradients of mixed polymer brushes on planar Au surfaces. Adv Mater 19:515–520

    Article  Google Scholar 

  22. Li D, Sheng X, Zhao B (2005) Environmentally responsive “hairy” nanoparticles: mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques. J Am Chem Soc 127:6248–6256

    Article  CAS  Google Scholar 

  23. Zhao B, Zhu L (2006) Nanoscale phase separation in mixed poly(tert-butyl acrylate)/polystyrene brushes on silica nanoparticles under equilibrium melt conditions. J Am Chem Soc 126:4574–4575

    Article  Google Scholar 

  24. Motornov M, Sheparovych R, Lupitskyy R, MacWilliams E, Hoy O, Luzinov I, Minko S (2007) Stimuli-responsive colloidal systems from mixed brush-coated nanoparticles. Adv Funct Mater 17:2307–2314

    Article  CAS  Google Scholar 

  25. Zhu L, Zhao B (2008) Transmission electron microscopy study of solvent-induced phase morphologies of environmentally responsive mixed homopolymer brushes on silica particles. J Phys Chem B 112:11529–11536

    Article  CAS  Google Scholar 

  26. Usov D, Gruzdev V, Nitschke M, Stamm M, Hoy O, Luzinov I, Tokarev I, Minko S (2007) Three-dimensional analysis of switching mechanism of mixed polymer brushes. Macromolecules 40:8774–8783

    Article  CAS  Google Scholar 

  27. Cheng L, Liu A, Peng S, Duan H (2010) Responsive plasmonic assemblies of amphiphilic nanocrystals at oil−water interfaces. ACS Nano 4:6098–6104

    Article  CAS  Google Scholar 

  28. Ionov L, Houbenov N, Sidorenko A, Stamm M, Minko S (2009) Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases 4:FA45–FA49

    Article  CAS  Google Scholar 

  29. Hoy O, Zdyrko B, Lupitskyy R, Sheparovych R, Aulich D, Wang JF, Bittrich E, Eichhorn KJ, Uhlmann P, Hinrichs K, Muller M, Stamm M, Minko S, Luzinov I (2010) Synthetic hydrophilic materials with tunable strength and a range of hydrophobic interactions. Adv Funct Mater 20:2240–2247

    Article  CAS  Google Scholar 

  30. Schmelmer U, Paul A, Kuller A, Steenackers M, Ulman A, Grunze M, Golzhauser A, Jordan R (2007) Nanostructured polymer brushes. Small 3:459–465

    Article  CAS  Google Scholar 

  31. Babu K, Dhamodharan R (2008) Grafting of poly(methyl methacrylate) brushes from magnetite nanoparticles using a Phosphonic acid based initiator by ambient temperature atom transfer radical polymerization (ATATRP). Nanoscale Res Lett 3:109–117

    Article  CAS  Google Scholar 

  32. Jakuczek L, Gutmann JS, Muller B, Rosenauer C, Zuchowska D (2008) Well-defined core-shell structures based on silsesquioxanemicrogels: grafting of polystyrene via ATRP and product characterization. Polymer 49:843–856

    Article  CAS  Google Scholar 

  33. Pei YW, Travas-Sedjic J, Williams DE (2012) Electrochemical switching of conformation of random polyampholyte brushes grafted onto polypyrrole. Langmuir 28:13241–13248

    Article  CAS  Google Scholar 

  34. Delcroix MF, Huet GL, Conard T, Demoustier-Champagne S, Du Prez FE, Landoulsi J, Dupont-Gillain CC (2013) Design of mixed PEO/PAA brushes with switchable properties toward protein adsorption. Biomacromolecules 14:215–225

    Article  CAS  Google Scholar 

  35. Jiang XM, Zhao B, Zhong GJ, Jin NX, Horton JM, Zhu L, Hafner RS, Lodge TP (2010) Microphase separation of high grafting density asymmetric mixed homopolymer brushes on silica particles. Macromolecules 43:8209–8217

    Article  CAS  Google Scholar 

  36. LeMieux MC, Peleshanko S, Anderson KD, Tsukruk VV (2007) Adaptive nanomechanical response of stratified polymer brush structures. Langmuir 23:265–273

    Article  CAS  Google Scholar 

  37. Burkert S, Bittrich E, Kuntzsch M, Muller M, Eichhorn KJ, Bellmann C, Uhlmann P, Stamm M (2010) Protein resistance of PNIPAAm brushes: application to switchable protein adsorption. Langmuir 26:1786–1795

    Article  CAS  Google Scholar 

  38. Xionga H, Zhenga JX, Van Horn RM, Jeong KU, Quirk RP, Lotz B, Thomas EL, Brittain WJ, Cheng SZD (2007) A new approach in the study of tethered diblock copolymer surface morphology and its tethering density dependence. Polymer 48:3732–3738

    Article  Google Scholar 

  39. Men Y, Xiao P, Chen J, Fu J, Huang Y, Zhang J, Xie Z, Wang W, Chen T (2014) Controlled evaporative self-assembly of poly(acrylic acid) in a confined geometry for fabricating patterned polymer brushes. Langmuir 30:4863–4867

    Article  CAS  Google Scholar 

  40. Chen T, Amin I, Jordan R (2012) Patterned polymer brushes. Chem Soc Rev 41:3280–3296

    Article  CAS  Google Scholar 

  41. Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R (2012) Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci 12:926–936

    Article  CAS  Google Scholar 

  42. Zhou F, Zheng Z, Yu B, Liu W, Huck WTS (2006) Multicomponent polymer brushes. J Am Chem Soc 128:16253–16258

    Article  CAS  Google Scholar 

  43. Ahn SJ, Kaholek M, Lee W-K, LaMattina B, LaBean TH, Zauscher S (2004) Surface-initiated polymerization on nanopatternsfabricated by electron-beam lithography. Adv Mater 16:2141–2145

    Article  CAS  Google Scholar 

  44. Ballav N, Schilp S, Zharnikov M (2008) Electron-beam chemical lithography with aliphatic self-assembled monolayers. Angew Chem Int Ed 47:1421–1424

    Article  CAS  Google Scholar 

  45. Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Golzhauser A (2008) Fully cross-linked and chemically patterned self-assembled monolayers. Phys Chem Chem Phys 10:7233–7238

    Article  CAS  Google Scholar 

  46. Zhou X, Wang X, Shen Y, Xie Z, Zheng Z (2011) Fabrication of arbitrary three-dimensional polymer structures by rational control of the spacing between nanobrushes. Angew Chem Int Ed 50:6506–6510

    Article  CAS  Google Scholar 

  47. Price AD, Hur SM, Fredrickson GH, Frischknecht AL, Huber DL (2012) Exploring lateral microphase separation in mixed polymer brushes by experiment and self-consistent field theory simulations. Macromolecules 45:510–524

    Article  CAS  Google Scholar 

  48. Albert JNL, Epps TH (2010) Self-assembly of block copolymer thin films. Mater Today 13:24–33

    Article  CAS  Google Scholar 

  49. Ruiz R, Kang HM, Detcheverry FA, Dobisz E, Kercher DS, Albrecht TR, de Pablo JJ, Nealey PF (2008) Density multiplication and improved lithography by directed block copolymer assembly. Science 321:936–939

    Article  CAS  Google Scholar 

  50. Stoykovich MP, Kang H, Daoulas KC, Liu G, Liu CC, de Pablo JJ, Mueller M, Nealey PF (2007) Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries. ACS Nano 1:168–175

    Article  CAS  Google Scholar 

  51. Stoykovich MP, Muller M, Kim SO, Solak HH, Edwards EW, de Pablo JJ, Nealey PF (2005) Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308:1442–1446

    Article  CAS  Google Scholar 

  52. Stoykovich MP, Nealey PF (2006) Block copolymers and conventional lithography. Mater Today 9:20–29

    Article  CAS  Google Scholar 

  53. Tang CB, Lennon EM, Fredrickson GH, Kramer EJ, Hawker CJ (2008) Evolution of block copolymer lithography to highly ordered square arrays. Science 322:429–432

    Article  CAS  Google Scholar 

  54. Welch ME, Ober CK (2013) Responsive and patterned polymer brushes. J Polym Sci B Polym Phys 51:1457–1472

    Article  Google Scholar 

  55. Agbolaghi S, Alizadeh-Osgouei M, Abbaspoor S, Abbasi F (2015) Self-assembling nano mixed-brushes having co-continuous surface morphology by melt growing single crystals and comparison with solution patterned leopard-skin surface morphology. RSC Adv 5:1538–1548

    Article  CAS  Google Scholar 

  56. Agbolaghi S, Abbasi F, Abbaspoor S, Alizadeh-Osgouei M (2015) Self-designed surfaces via single-co-crystallization of homopolymer and diblock copolymers in various growth conditions. Eur Polym J 66:108–118

    Article  CAS  Google Scholar 

  57. Alizadeh-Osgouei M, Agbolaghi S, Abbaspoor S, Abbasi F (2016) A subtle insight into nano-convergence of substrate thickness in melt-grown single-co-crystals. Colloid Polym Sci 294:869–878

    Article  CAS  Google Scholar 

  58. Abbaspoor S, Agbolaghi S, Abbasi F (2017) Development of nano-channel single crystals and verification of their structures by SAXS. Polym Bull 74:1103–1119

    Article  CAS  Google Scholar 

  59. Agbolaghi S, Nazari M, Abbaspoor S, Gheybi H, Abbasi F (2016) Micro/nano conductive-dielectric channels designed by poly(ethylene glycol) single crystals covered by polyaniline nanofibers. Polymer 92:264–272

    Article  CAS  Google Scholar 

  60. Agbolaghi S, Abbasi F, Abbaspoor S (2014) Epitaxial single crystal surface patterning and study of physical and chemical environmental effects on crystal growth. Colloid Polym Sci 292:1375–1383

    Article  CAS  Google Scholar 

  61. Agbolaghi S, Abbasi F, Abbaspoor S (2014) Preparation of polymer brushes via growth of single crystals of poly(ethylene glycol)-block-polystyrene diblock copolymers synthesized by ATRP and studying the crystal lateral size and brush tethering density. Polym Bull 71:3177–3196

    Article  CAS  Google Scholar 

  62. Abbaspoor S, Abbasi F, Agbolaghi S (2014) Effects of various polymer brushes on the crystallization of poly(ethylene glycol) in poly(ethylene glycol)-b-polystyrene and poly(ethylene glycol)-b-poly(methyl methacrylate) single crystals. J Polym Res 21:1–8

    Article  CAS  Google Scholar 

  63. Nazari M, Agbolaghi S, Abbaspoor S, Gheybi H, Abbasi F (2015) Arrangement of conductive rod nanobrushes via conductive–dielectric–conductive sandwiched single crystals of poly(ethylene glycol) and polyaniline block copolymers. Macromolecules 48:8947–8957

    Article  CAS  Google Scholar 

  64. Zheng JX, Xiong H, Chen WY, Lee K, Van Horn RM, Quirk RP, Lotz B, Thomas EL, Shi A-C, Cheng SZD (2006) Onsets of tethered chain overcrowding and highly stretched brush regime via crystalline-amorphous diblock copolymers. Macromolecules 39:641–650

    Article  CAS  Google Scholar 

  65. Chen WY, Li CY, Zheng JX, Huang P, Zhu L, Ge Q, Quirk RP, Lotz B, Deng L, Wu C, Thomas EL, Cheng SZD (2004) Chemically shielded poly(ethylene oxide) single crystal growth and construction of channel-wire arrays with chemical and geometric recognitions on a submicrometer scale. Macromolecules 37:5292–5299

    Article  CAS  Google Scholar 

  66. Chen WY, Zheng JX, Cheng SZD, Li CY, Huang P, Zhu L, Xiong HM, Ge Q, Guo Y, Quirk RP, Lotz B, Deng LF, Wu C, Thomas EL (2004) Onset of tethered chain overcrowding. Phys Rev Lett 93:028301

    Article  Google Scholar 

  67. Richardson PH, Richard RW, Blundell DJ, MacDonald WA, Mills P (1995) Differential scanning calorimetry and optical microscopy investigations of the isothermal crystallization of a poly(ethylene oxide)-poly(methyl methacrylate) block copolymer. Polymer 36:3059–3069

    Article  CAS  Google Scholar 

  68. Brandup J, Immergut EH (1975) Polymer Handbook. Wiley, New York

    Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhang Abbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaspoor, S., Agbolaghi, S., Nazari, M. et al. Disperse-within-disperse patterning on ternary/binary mixed-brush single crystals using polyaniline, polystyrene and poly(methyl methacrylate) grafts. J Polym Res 24, 160 (2017). https://doi.org/10.1007/s10965-017-1322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1322-4

Keywords

Navigation