Skip to main content
Log in

Novel phosphorus-containing polyhedral Oligomeric Silsesquioxane functionalized Graphene oxide: preparation and its performance on the mechanical and flame-retardant properties of Bismaleimide composite

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel phosphorus-containing polyhedral oligomeric silsesquioxane functionized graphene oxide(P-POSS-GO) were achieved and the resultant functionized GO combined with 4 wt% P-POSS were incorporated into bismaleimide resin to prepare flame-retardant P-POSS-GO/P-POSS/DBMI composite. Fourier-transform infrared spectra, transmission electron spectroscopy and X-ray diffraction were employed to examine the efficiency of surface functionalization of GO. The composite containing P-POSS and modified GO exhibited excellent flame-retardant property and better thermal stability as well as high mechanical property. With the incorporation of 0.6 wt% P-POSS-GO and 4 wt% P-POSS to DBMI, satisfied flame retardant grade V-0 and LOI as high as 39.4 were obtained. The increase of degradation activation energy could be internal reason for the improvement of flame retardancy. Besides, P-POSS-GO can facilitate the growth of oxygen insulation and heat insulation char layer, which could be outer reason for the improvement of flame retardancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li S, Yan H, Feng S, et al. (2015) Synthesis and characterization of a phosphorus-containing flame retardant with double bonds and its application in bismaleimide resins [J]. RSC Adv 5(123):101480–101486

    Article  CAS  Google Scholar 

  2. Sun B, Liang G, Gu A, et al. (2013) High performance miscible Polyetherimide/Bismaleimide resins with simultaneously improved integrated properties based on a novel Hyperbranched Polysiloxane having a high degree of branching[J]. Ind Eng Chem Res 52(14):5054–5065

    Article  CAS  Google Scholar 

  3. Tsai PF, Kuo WL, Shau MD (2013) Thermal properties improvement of Bismaleimide resin by a new phosphorus-containing polycyclic Bismaleimide[J]. J Chin Chem Soc-Taip 60(2):229–234

    Article  CAS  Google Scholar 

  4. Liu YL, Liu YL, Ru JJ, et al. (2001) Triphenylphosphine oxide-based bismaleimide and poly(bismaleimide): synthesis, characterization, and properties[J]. J Polym Sci Pol Chem 39(39):1716–1725

    Article  CAS  Google Scholar 

  5. Yao W, Gu A, Liang G, et al. (2012) Preparation and properties of hollow silica tubes/bismaleimide/diallylbisphenol a composites with improved toughness, dielectric properties, and flame retardancy[J]. Polym Advan Technol 23(3):326–335

    Article  CAS  Google Scholar 

  6. Manias E, Touny A, Wu L, et al. (2001) Polypropylene/Montmorillonite Nanocomposites. Review of the synthetic routes and materials properties[J]. Chem Mater 13(10):3516–3523

    Article  CAS  Google Scholar 

  7. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites[J]. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  8. Könnicke D, Kühn A, Mahrholz T, et al. (2011) Polymer nanocomposites based on epoxy resin and ATH as a new flame retardant for CFRP: preparation and thermal characterisation[J]. J Mater Sci 46(21):7046–7055

    Article  Google Scholar 

  9. Xu T, Huang X (2010) Huang, X.M.: a TG-FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process[J]. J Anal Appl Pyrol 87(2):217–223

    Article  CAS  Google Scholar 

  10. Hornsby PR, Mthupha A (2011) Characterization of highly filled magnesium hydroxide-polypropylene composite foams[J]. J Cell Plast 47(1):17–30

    Article  Google Scholar 

  11. Zhang S, Horrocks AR (2003) A review of flame retardant polypropylene fibres[J]. Prog Polym Sci 28(11):1517–1538

    Article  CAS  Google Scholar 

  12. Qian X, Song L, Yu B, et al. (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins[J]. J Mater Chem A 1(23):6822–6830

    Article  CAS  Google Scholar 

  13. Wang X, Song L, Yang H, et al. (2011) Synergistic effect of Graphene on Antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites[J]. Ind Eng Chem Res 50(9):5376–5383

    Article  CAS  Google Scholar 

  14. Zhuo D, Gu A, Liang G, et al. (2011) Novel high performance functionalized ladderlike polyphenylsilsesquioxane/bismaleimide hybrids with very good flame retardancy, thermal, and dimensional stability[J]. J Mater Sci 46(24):7649–7659

    Article  CAS  Google Scholar 

  15. Liu C, Yan H, Chen Z, et al. (2015) Enhanced tribological properties of bismaleimides filled with aligned graphene nanosheets coated with Fe3O4 nanorods[J]. J Mater Chem A 3(19):10559–10565

    Article  CAS  Google Scholar 

  16. Lu H, Wilkie CA (2010) Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb 2 O 3 in improving the flame retardancy of polystyrene[J]. Polym Degrad Stabil. 95(4):564–571

    Article  CAS  Google Scholar 

  17. Ma H, Tong L, Xu Z, et al. (2007) Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin[J]. Nanotechnology 18(375602):14026–14029

    Google Scholar 

  18. Wu Q, Zhu W, Zhang C, et al. (2010) Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites[J]. Carbon 48(6):1799–1806

    Article  CAS  Google Scholar 

  19. Geim AK (2009) Science, Graphene: status and prospects[J]. Science 324(5934):1530–1534

    Article  CAS  Google Scholar 

  20. Bunch JS, Verbridge SS, Alden JS, et al. (2008) Impermeable atomic membranes from graphene sheets.[J]. Nano Lett 8(8):2458–2462

    Article  CAS  Google Scholar 

  21. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites[J]. Macromolecules 43(16):6515–6530

    Article  CAS  Google Scholar 

  22. Liao KH, Yong TP, Abdala A, et al. (2013) Aqueous reduced graphene/thermoplastic polyurethane nanocomposites[J]. Polymer 54(17):4555–4559

    Article  CAS  Google Scholar 

  23. Zandiatashbar A, Lee G, An SJ, et al. (2014) Effect of defects on the intrinsic strength and stiffness of graphene[J]. Nat Commun 5:3186

    Article  Google Scholar 

  24. Liu C, Yan H, Lv Q, et al. (2016) Enhanced tribological properties of aligned reduced graphene oxide-Fe3O4@polyphosphazene/bismaleimides composites[J]. Carbon 102:145–153

    Article  CAS  Google Scholar 

  25. Li G, Wang L, Ni H, et al. (2001) Polyhedral Oligomeric Silsesquioxane (POSS) polymers and copolymers: a review[J]. J Inorg Organomet P 11(3):123–154

    Article  CAS  Google Scholar 

  26. Yu B, Tao Y, Liu L, et al. (2015) Thermal and flame retardant properties of transparent UV-curing epoxy acrylate coatings with POSS-based phosphonate acrylate[J]. RSC Adv 5(92):75254–75262

    Article  CAS  Google Scholar 

  27. Li S, Yan H, Tang C, et al. (2016) Novel phosphorus-containing polyhedral oligomeric silsesquioxane designed for high-performance flame-retardant bismaleimide resins[J]. J Polym Res 23(11):238

    Article  Google Scholar 

  28. Yang Y (2008) Synthesis and characterization of octa(γ-chlor-opropyl) silsesquioxane[J]. New Chemical Materials

  29. Zhan Y, Yang X, Guo H, et al. (2012) Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability[J]. J Mater Chem 22(22):5602–5608

    Article  CAS  Google Scholar 

  30. Shau S, Juang T, Lin H, et al. (2012) Individual graphene oxide platelets through direct molecular exfoliation with globular amphiphilic hyperbranched polymers[J]. Polym Chem-Uk 3(5):1249–1259

    Article  CAS  Google Scholar 

  31. Yasmin A, Luo JJ, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites[J]. Compos Sci Technol 66(9):1182–1189

    Article  CAS  Google Scholar 

  32. Chandrasekaran S, Sato N, Tölle F, et al. (2014) Fracture toughness and failure mechanism of graphene based epoxy composites[J]. Compos Sci Technol 97(11):90–99

    Article  CAS  Google Scholar 

  33. Johnsen BB, Kinloch AJ, Mohammed RD, et al. (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers[J]. Polymer 48(2):530–541

    Article  CAS  Google Scholar 

  34. Xu J (2011) Microcellular injection molding[Z]. John Wiley & Sons, Hoboken, pp. 1–54

    Google Scholar 

  35. Park JS, Cho SM, Kim WJ, et al. (2011) Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets.[J]. Acs Appl Mater Inter. 3(2):360–368

    Article  CAS  Google Scholar 

  36. Higginbotham AL, Lomeda JR, Morgan AB, et al. (2009) Graphite oxide flame-retardant polymer nanocomposites[J]. Acs Appl Mater Inter 1(10):2256–2261

    Article  CAS  Google Scholar 

  37. Liao SH, Liu PL, Hsiao MC, et al. (2012) One-step reduction and functionalization of Graphene oxide with phosphorus-based compound to produce flame-retardant epoxy Nanocomposite[J]. Ind Eng Chem Res 51(12):4573–4581

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Dranca I, Fan X, et al. (2010) Kinetics of the thermal and thermo-oxidative degradation of a polystyrene-clay Nanocomposite[J]. Macromol Rapid Comm 25(3):498–503

    Article  Google Scholar 

  39. Huang ZG, Shi WF (2007) Effect of poly(bisphenol a acryloxyethyl phosphate) on the activation energy in thermal degradation of urethane acrylate[J]. J Therm Anal Calorim 88(3):833–841

    Article  CAS  Google Scholar 

  40. Alvarez VA, Vázquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites[J]. Polym Degrad Stabil 84(1):13–21

    Article  CAS  Google Scholar 

  41. Wang DY, Das A, Leuteritz A, et al. (2011) Thermal degradation behaviors of a novel nanocomposite based on polypropylene and co–al layered double hydroxide[J]. Polym Degrad Stabil 96(3):285–290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially sponsored by the Doctoral Program of Higher Education of China (20136102110049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Yan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Yan, H., Li, S. et al. Novel phosphorus-containing polyhedral Oligomeric Silsesquioxane functionalized Graphene oxide: preparation and its performance on the mechanical and flame-retardant properties of Bismaleimide composite. J Polym Res 24, 157 (2017). https://doi.org/10.1007/s10965-017-1310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1310-8

Keywords

Navigation