Skip to main content
Log in

Effect of zeolites on morphology and properties of water-blown semi-rigid ammonium polyphosphate intumescent flame-retarding polyurethane foam

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Water-blown semi-rigid polyurethane foams (SPFs) were prepared by a one-shot, free-rise method. Effect of zeolites (ZEO) on morphology, flame retardancy, mechanical properties, damping properties, and thermal properties of ammonium polyphosphate (APP) intumescent flame-retarding SPFs was studied through the analysis of rotary viscosity test, limiting oxygen index (LOI), horizontal-vertical burning test, scanning electron microscopy (SEM) and mechanical test etc. Rotary viscosity test found that viscosity just enhanced a little when zeolites were added to the reaction matrix containing APP. With zeolites added, internal defects foams caused by the high loading of flame retardants could be effectively eliminated because the reaction heat could be partly taken by zeolites’ crystal water. The addition of zeolites did not increase the density of the APP intumescent flame-retarding SPFs. Meanwhile, with the presence of zeolites the APP intumescent flame-retarding SPFs exhibited better flame retardant property when APP content is high. Mechanical test showed that with the introduction of ZEO, compression strength and compression modulus of SPFs stably enhanced with the increasing APP loading and reached a maximum value when the APP content was 45 pphp. At a certain ZEO content (ZEO = 15 pphp), the APP intumescent flame-retarding SPFs with zeolites exhibited higher compression strength and modulus when the APP loading was over than 45 pphp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cinelli P, Anguillesi I, Lazzeri A (2013) Green synthesis of flexible polyurethane foams from liquefied lignin [J]. Eur Polym J 49(6):1174–1184

    Article  CAS  Google Scholar 

  2. Gabbard J D. Flexible water-blown polyurethane foams: U.S. Patent 5,624,968[P]. 1997-4–29.

  3. Wang JQ, Chow WK (2005) A brief review on fire retardants for polymeric foams [J]. J Appl Polym Sci 97(1):366–376

    Article  CAS  Google Scholar 

  4. Luda MP, Balabanovich AI, Hornung A, et al. (2003) Thermal degradation of a brominated bisphenol a derivative[J]. Polym Adv Technol 14(11–12):741–748

    Article  CAS  Google Scholar 

  5. Duquesne S, Bras ML, Bourbigot S, et al. (2003) Expandable graphite: a fire retardant additive for polyurethane coatings[J]. Fire Mater 27(3):103–117

    Article  CAS  Google Scholar 

  6. Thirumal M, Khastgir D, Singha NK, et al. (2008) Effect of expandable graphite on the properties of intumescent flame-retardant polyurethane foam[J]. J Appl Polym Sci 110(5):2586–2594

    Article  CAS  Google Scholar 

  7. Li Y, Zou J, Zhou S, et al. (2014) Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water‐blown semi‐rigid polyurethane foam[J]. Journal of applied polymer science 131(3). https://doi.org/10.1002/app.39885

  8. Meng XY, Ye L, Zhang XG, et al. (2009) Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams[J]. J Appl Polym Sci 114(2):853–863

    Article  CAS  Google Scholar 

  9. Modesti M, Lorenzetti A (2002) Flame retardancy of polyisocyanurate–polyurethane foams: use of different charring agents[J]. Polym Degrad Stab 78(2):341–347

    Article  CAS  Google Scholar 

  10. Kishore K, Mohandas K (1981) Mechanistic studies on the action of ammonium phosphate on polymer fire retardancy [J]. Combustion and Flame 43:145–153

    Article  CAS  Google Scholar 

  11. Wang JS, Wang DY, Liu Y, et al. (2008) Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin[J]. J Appl Polym Sci 108(4):2644–2653

    Article  CAS  Google Scholar 

  12. Bourbigot S, Bras ML, Bréant P, et al. (1996) Zeolites: new synergistic agents for intumescent fire retardant thermoplastic formulations—criteria for the choice of the zeolite [J]. Fire Mater 20(3):145–154

    Article  CAS  Google Scholar 

  13. Kandhal P S. Warm mix asphalt technologies: An overview[C]//Journal of the Indian Roads Congress. 2010, 71(2).

  14. Bian XC, Tang JH, Li ZM, et al. (2007) Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam [J]. J Appl Polym Sci 104(5):3347–3355

    Article  CAS  Google Scholar 

  15. Luo W, Li Y, Zou H, et al. (2014) Study of different-sized sulfur-free expandable graphite on morphology and properties of water-blown semi-rigid polyurethane foams [J]. RSC Adv 4(70):37302–37310

    Article  CAS  Google Scholar 

  16. Xu W, Wang G, Zheng X (2015) Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants[J]. Polym Degrad Stab 111:142–150

    Article  CAS  Google Scholar 

  17. Hu XM, Wang DM (2013) Enhanced fire behavior of rigid polyurethane foam by intumescent flame retardants [J]. J Appl Polym Sci 129(1):238–246

    Article  CAS  Google Scholar 

  18. Shi L, Li ZM, Yang MB, et al. (2005) Expandable graphite for halogen-free flame-retardant of high-density rigid polyurethane foams [J]. Polym-Plast Technol Eng 44(7):1323–1337

    Article  CAS  Google Scholar 

  19. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes [J]. Prog Polym Sci 34(10):1068–1133

    Article  CAS  Google Scholar 

  20. Tests for flammability of plastic materials for part in devices and appliances, Underwriters Laboratories, Northbrook ANSI/ASTM D-635/77.

  21. Mequanint K, Sanderson R, Pasch H (2002) Thermogravimetric study of phosphated polyurethane ionomers [J]. Polym Degrad Stab 77(1):121–128

    Article  CAS  Google Scholar 

  22. Liang H, Shi W, Gong M (2005) Expansion behaviour and thermal degradation of tri (acryloyloxyethyl) phosphate/methacrylated phenolic melamine intumescent flame retardant system[J]. Polym Degrad Stab 90(1):1–8

    Article  CAS  Google Scholar 

  23. Pielichowski K, Słotwińska D, Dziwiński E (2004) Segmented MDI/HMDI-based polyurethanes with lowered flammability [J]. J Appl Polym Sci 91(5):3214–3224

    Article  Google Scholar 

  24. Lefebvre J, Bastin B, Le Bras M, Duquesne S, Paleja R, Delobel R (2005) Thermal stability and fire properties of conventional flexible polyurethane foam formulations. Polym Degrad Stab 88(1):28–34

    Article  CAS  Google Scholar 

  25. Das NC, Chaki TK, Khastgir D (2003) Effect of filler treatment and crosslinking on mechanical and dynamic mechanical properties and electrical conductivity of carbon black-filled ethylene–vinyl acetate copolymer composites[J]. J Appl Polym Sci 90(8):2073–2082

    Article  CAS  Google Scholar 

  26. Jana S, Zhong WH (2009) Graphite particles with a “puffed” structure and enhancement in mechanical performance of their epoxy composites [J]. Mater Sci Eng A 525(1):138–146

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Natural Science Foundation of China (51273118), Provincial Science and Technology Pillar Program of Sichuan (2013FZ0006) for financial support, and the Analytical and Testing Center of Sichuan University for providing SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huawei Zou or Mei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Mo, X., Li, Y. et al. Effect of zeolites on morphology and properties of water-blown semi-rigid ammonium polyphosphate intumescent flame-retarding polyurethane foam. J Polym Res 24, 154 (2017). https://doi.org/10.1007/s10965-017-1306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1306-4

Keywords

Navigation