Skip to main content
Log in

Melt processing of biodegradable poly(lactic acid)/functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present work demonstrates about the formulation of functionalized chitosan (CH-g-OLLA) through the transformation of hydrophilic nature of chitosan into hydrophobic by grafting with oligo(L-lactic acid) (OLLA). The developed CH-g-OLLA is easily soluble in poly(lactic acid) (PLA) matrix, which provides an opportunity towards producing industrially viable nanocomposite films for stringent food packaging and beverages applications. The grafting of OLLA chains is confirmed at NH2 group of chitosan through the presence of two new peaks at 4.2 and 5.1 ppm in 1H–NMR spectra. Various parameters like yield (%), grafting efficiency (%) and percent grafting (%) are calculated as ~51.6, ~40 and ~150%, respectively. Functionalized chitosan has been utilized as nano-filler in PLA matrix to fabricate PLA/CH-g-OLLA nanocomposite films which have compounded successfully by co-rotating twin screw compounder cum cast film extrusion technique (distinctly advantageous over conventional solution casting) at bench scale as well as semi-pilot scale and further demonstrated for its application in the area of food packaging with tailored oxygen barrier properties. Uniform dispersion of spherical aggregates of functionalized chitosan is observed in PLA/CH-g-OLLA nanocomposite films using TEM analysis. A significant reduction up to ~11 °C in glass transition temperature of PLA is observed by adding 5 wt% of nano-filler as a result of plasticization effect, which is an essential property in designing of flexible packages. Mechanical modeling of extruded PLA/CH-g-OLLA films has been performed to compare the experimental values with theoretical results using various mathematical models in which modified foam model, Nielsen model and modified Mitsuishi model demonstrate the best match for Young’s modulus (±0.08), tensile strength (±0.06) and percentage elongation (±0.03), respectively. This may be a significant contribution towards commercialization of such formulation where elegant melt extrusion process of PLA with functionalized chitosan is capable of reducing oxygen permeability up to ~10 folds due to a drastic reduction (~96%) in oxygen solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arrieta MP, Castro-Lopez MDM, Rayon E, Barral-Losada LF, Lopez-Vilarino JM, Lopez J, Gonzalez-Rodriguez MV (2014) Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with Catechin intended for active food packaging applications. J Agric Food Chem 62:10170–10180

    Article  CAS  Google Scholar 

  2. Zhang M, Thomas NL (2011) Blending Polylactic acid with Polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79

    Article  Google Scholar 

  3. Ni C, Luo R, Xu K, Chen GQ (2009) Thermal and crystallinity property studies of poly (L-lactic acid) blended with oligomers of 3-Hydroxybutyrate or dendrimers of Hydroxyalkanoic acids. J Appl Polym Sci 111:1720–1727

    Article  CAS  Google Scholar 

  4. Barata JFB, Pinto RJB, Vaz Serra VIRC, Silvestre AJD, Trindade T, Neves MGPMS, Cavaleiro JAS, Daina S, Sadocco P, Freire CSR (2016) Fluorescent bioactive Corrole grafted-chitosan films. Biomacromolecules 17:1395–1403

    Article  CAS  Google Scholar 

  5. Bonilla J, Fortunati E, Vargas M, Chiralt A, Kenny JM (2013) Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng 119:236–243

    Article  CAS  Google Scholar 

  6. Suyatma NE, Copinet A, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12:1–6

    Article  CAS  Google Scholar 

  7. Sebastien F, Stephane G, Copinet A, Coma V (2006) Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against Mycotoxinogen strains. Carbohydr Polym 65:185–193

    Article  CAS  Google Scholar 

  8. Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly(lactic acid) bionanocomposite films with improved thermal, mechanical, and gas barrier properties. Biomacromolecules 17:2603–2618

    Article  CAS  Google Scholar 

  9. Pal AK, Katiyar V (2017) Thermal degradation behaviour of Nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films. Int J Biol Macromol 95:1267–1279

    Article  CAS  Google Scholar 

  10. Aryaei A, Jayatissa AH, Jayasuriya AC (2012) Nano and Micro mechanical properties of uncross-linked and cross-linked chitosan films. J Mech Behav Biomed Mater 5:82–89

    Article  CAS  Google Scholar 

  11. Wu TM, Wu CY (2006) Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stabil 91:2198–2204

    Article  CAS  Google Scholar 

  12. Tripathi N, Katiyar V (2016) PLA/functionalized-gum Arabic based bionanocomposite films for high gas barrier applications. J Appl Polym Sci 133:43458–43466

    Article  Google Scholar 

  13. Singh V, Tripathi DN, Tiwari A, Sanghi R (2006) Microwave synthesized chitosan-graft-poly(methylmethacrylate): an efficient Zn2+ ion binder. Carbohydr Polym 65:35–41

    Article  CAS  Google Scholar 

  14. Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 47:254–260

    Article  CAS  Google Scholar 

  15. Pandey S, Mishra SB (2012) Microwave synthesized xanthan gum-g-poly(ethylacrylate): an efficient Pb2+ ion binder. Carbohydr Polym 90:370–379

    Article  CAS  Google Scholar 

  16. Singla RK, Maiti SN, Ghosh AK (2016) Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites. Polym-Plast Technol Eng 55:475–485

    Article  Google Scholar 

  17. Dhar P, Tarafder D, Kumar A, Katiyar V (2016) Thermally recyclable Polylactic acid/cellulose nanocrystals films through reactive extrusion process. Polymer 87:268–282

    Article  CAS  Google Scholar 

  18. Wu Y, Zheng Y, Yang W, Wang C, Hu J, Fu S (2005) Synthesis and characterization of a novel amphiphilic chitosan-Polylactide graft copolymer. Carbohydr Polym 59:165–171

    Article  CAS  Google Scholar 

  19. Yu HY, Qin ZY, Liu YN, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89:971–978

    Article  CAS  Google Scholar 

  20. Dhar P, Tarafder D, Kumar A, Katiyar V (2015) Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv 5:60426–60440

    Article  CAS  Google Scholar 

  21. Abraham R, Thomas SP, Kuryan S, Isac J, Varughese KT, Thomas S (2009) Mechanical properties of ceramic-polymer nanocomposites. Express Polym Lett 3:177–189

    Article  CAS  Google Scholar 

  22. Bliznakov ED, White CC, Shaw MT (2000) Mechanical properties of blends of HDPE and recycled urea-formaldehyde resin. J Appl Polym Sci 77:3220–3227

    Article  CAS  Google Scholar 

  23. Bigg DM (1987) Mechanical properties of particulate filled polymers. Polym Compos 8:115–122

    Article  CAS  Google Scholar 

  24. Kakkar D, Maiti SN (2012) Effect of flexibility of ethylene vinyl acetate and crystallization of polypropylene on the mechanical properties of i-PP/EVA blends. J Appl Polym Sci 123:1905–1912

    Article  CAS  Google Scholar 

  25. Rinawa K, Maiti SN, Sonnier R, Cuesta JML (2014) Influence of microstructure and flexibility of Maleated styrene-b-(ethylene-co-butylene)-b-styrene rubber on the mechanical properties of polyamide 12. Polym Bull 71:1131–1152

    Article  CAS  Google Scholar 

  26. Maiti SN, Lopez BH (1992) Tensile properties of polypropylene/kaolin composites. J Appl Polym Sci 44:353–360

    Article  CAS  Google Scholar 

  27. Ishak KMK, Verbeek CJ (2016) Mechanical properties of protein-based polymer blends. J Eng Sci 12:77–86

    Google Scholar 

  28. Kumar S, Satapathy BK, Maiti SN (2013) Correlation of morphological parameters and mechanical performance of polyamide-612/poly (ethylene-Octene) elastomer blends. Polym Adv Technol 24:511–519

    Article  CAS  Google Scholar 

  29. Mitsuishi K, Kodama S, Kawasaki H (1985) Mechanical properties of polypropylene filled with calcium carbonate. Polym Eng Sci 25:1069–1073

    Article  CAS  Google Scholar 

  30. Sharma R, Maiti SN (2014) Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym-Plast Technol Eng 53:229–238

    Article  CAS  Google Scholar 

  31. Hafsa J, Ali Smach M, Khedher MRB, Charfeddine B, Limem K, Majdoub H, Rouatbi S (2016) Physical, antioxidant and antimicrobial properties of chitosan films containing eucalyptus Globulus essential oil. LWT-Food Sci Technol 68:356–364

    Article  CAS  Google Scholar 

  32. Rotabakk BT, Birkeland S, Jeksrud WK, Sivertsvik M (2006) Effect of modified atmosphere packaging and soluble gas stabilization on the shelf life of skinless chicken breast fillets. J Food Sci 71:S124–S131

    Article  CAS  Google Scholar 

  33. Espadin A, Vazquez N, Tecante A, De Dios LT, Gimeno M, Velasquillo C, Shirai K (2014) Fibroblast viability and inhibitory activity against pseudomonas Aeruginosain lactic acid-grafted chitosan hydrogels. J Appl Polym Sci 131:40252–40258

    Article  Google Scholar 

  34. Luckachan GE, Pillai CKS (2006) Chitosan/oligo L-Lactide graft copolymers: effect of hydrophobic side chains on the Physico-chemical properties and biodegradability. Carbohydr Polym 64:254–266

    Article  CAS  Google Scholar 

  35. Bhattarai N, Ramay HR, Chou SH, Zhang M (2006) Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery. Int J Nanomedicine 1:181–187

    Article  CAS  Google Scholar 

  36. Tenn N, Follain N, Soulestin J, Cretois R, Bourbigot S, Marais S (2013) Effect of Nanoclay hydration on barrier properties of PLA/montmorillonite based nanocomposites. J Phys Chem C 117:12117–12135

    Article  CAS  Google Scholar 

  37. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2011) Melt processing of poly(L-lactic acid) in the presence of Organomodified anionic or cationic clays. J Appl Polym Sci 122:112–125

    Article  CAS  Google Scholar 

  38. Valapa R, Hussain S, Iyer PK, Pugazhenthi G, Katiyar V (2016) Non-isothermal crystallization kinetics of sucrose palmitate reinforced poly(lactic acid) bionanocomposites. Polym Bull 73:21–38

    Article  CAS  Google Scholar 

  39. Peng Y, Li Y (2014) Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll 36:287–293

    Article  CAS  Google Scholar 

  40. Suyatma NE, Tighzert L, Copinet A (2005) Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957

    Article  CAS  Google Scholar 

  41. Jayaramudu J, Reddy GSM, Varaprasad K, Sadiku ER, Ray SS, Rajulu AV (2013) Structure and properties of poly (lactic acid)/Sterculia Urens uniaxial fabric biocomposites. Carbohydr Polym 94:822–828

    Article  CAS  Google Scholar 

  42. Ambrosio-Martin J, Fabra MJ, Lopez-Rubio V, Lagaron JM (2014) An effect of lactic acid oligomers on the barrier properties of Polylactide. J Mater Sci 49:2975–2986

    Article  CAS  Google Scholar 

  43. Sreekumar PA, Leblanc N, Saiter JM (2013) Effect of glycerol on the properties of 100% biodegradable thermoplastic based on wheat flour. J Polym Environ 21:388–394

    Article  CAS  Google Scholar 

  44. Sewda K, Maiti SN (2007) Mechanical properties of HDPE/bark flour composites. J Appl Polym Sci 105:2598–2604

    Article  CAS  Google Scholar 

  45. Li J, He Y, Inoue Y (2003) Thermal and mechanical properties of biodegradable blends of poly(L-lactic acid) and lignin. Polym Int 52:949–955

    Article  CAS  Google Scholar 

  46. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of Polylactic acid: a review. Express Polym Lett 9:435–455

    Article  CAS  Google Scholar 

  47. Graupner N, Mussig J (2011) A comparison of the mechanical characteristics of Kenaf and Lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos Part A-APPL S 42:2010–2019

    Article  Google Scholar 

  48. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  49. Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra P (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48:146–154

    Article  CAS  Google Scholar 

  50. Byrne F, Ward PG, Kennedy J, Imaz N, Hughes D, Dowling DP (2009) The effect of Masterbatch addition on the mechanical, thermal, optical and surface properties of poly(lactic acid). J Polym Environ 17:28–33

    Article  CAS  Google Scholar 

  51. Dadashi S, Mousavi SM, Emam-Djomeh Z, Oromiehie A (2014) Functional properties of biodegradable nanocomposites from poly lactic acid (PLA). Int J Nanosci Nanotechnol 10:245–256

    Google Scholar 

  52. Byun Y, Kim YT, Whiteside S (2010) Characterization of an antioxidant Polylactic acid (PLA) film prepared with a-tocopherol, BHT and polyethylene glycol using film cast extruder. J Food Eng 100:239–244

    Article  CAS  Google Scholar 

  53. Samsudin H, Soto-Valdez H, Auras R (2014) Poly(lactic acid)film incorporated with Marigold flower extract (Tagetes Erecta) intended for fatty-food application. Food Control 46:55–66

    Article  CAS  Google Scholar 

  54. Cheng D, Zan Y, Du J, Luo Y (2016) Recycling of ultrahigh molecular weight polyethylene waste used for preparing high performance synthetic paper. J Appl Polym Sci 133:44159–44166

    Google Scholar 

  55. Ahmadzadeh S, Keramat J, Nasirpour A, Hamdami N, Behzad T, Aranda L, Vilasi M, Desobry S (2016) Structural and mechanical properties of clay nanocomposite foams based on cellulose for the food-packaging industry. J Appl Polym Sci 133:42079–42089

    Article  Google Scholar 

Download references

Acknowledgements

Authors are truly overwhelmed to Centre of Excellence for Sustainable Polymers (CoE-SusPol) funded by Department of Chemical and Petrochemical (DCPC), Science and Engineering Research Board, Department of Science and Technology (GoI) (SERB/MOFPI/0044/2012), Department of Chemical Engineering and Central Instruments Facility (CIF) at Indian Institute of Technology, Guwahati, India for providing accessibility of various instruments and other research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A.K., Katiyar, V. Melt processing of biodegradable poly(lactic acid)/functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties. J Polym Res 24, 173 (2017). https://doi.org/10.1007/s10965-017-1305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1305-5

Keywords

Navigation