Skip to main content

Advertisement

Log in

Synthesis and microstructural characterization of low to high molecular weight poly(vinylphosphonic acid)s: effect of molecular weight and temperature on acidity and polyelectrolyte behavior

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(vinylphosphonic acid) (PVPA) was synthesized by free radical polymerization of vinylphosphonic acid (VPA) in different solvents. Bromotrichloromethane as a chain transfer agent (CTA) was used in some experiments to control molecular weight of the PVPA. The effects of solvent type and initiator and CTA concentrations on the microstructure, molecular weight and stereoregularity of the resulting PVPA was extensively investigated by FTIR, 1HNMR, 31PNMR and elemental analysis. Polymers with a number-average molecular weight (Mn) in the range of 1550 to 42,190 gmol−1 were prepared. High molecular weight PVPA with Mn of 42,190 gmol−1 was obtained from aqueous solution polymerization of VPA with initiator/monomer molar ratio of 0.16/100 at 80°C. Molecular weight decreased with increasing the concentration of initiator and CTA. 1HNMR spectra were used to investigate tetrad sequences for the methylene protons of PVPA, from which stereochemical information of the polymer chain was obtained. Tetrad sequences were also calculated by Bernoullian probabilities. Moreover, the percent of head-to-head and tail-to-tail irregularities of the resulting PVPA were obtained to be in the range of 16.6–58% depending on the reaction conditions. The PVPA synthesized in acetic anhydride as a solvent had highest amount of the irregularities due to the high reaction rate, which does not allow controlling the structure. Furthermore, due to the importance of PVPA in the proton exchange membranes (PEMs), the effects of molecular weight and temperature on the acidity and titration behavior of PVPA polyelectrolyte were investigated. It was found that molecular weight has no significant effect on the acidity and dissociation of protons at operational conditions of degree of dissociation lower than 0.5. It was also found that by increasing the temperature, pH values were decreased, meaning that dissociation of protons and consequently the proton conductivity of PVPA membranes can be affected by temperature. Titration behavior of PVPA also showed that the PVPA has a behavior similar to a monoprotic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan J, Gemeinhart RA, Ma M, Saltzman WM (2005) Biomaterials 26:3663–3671

    Article  CAS  Google Scholar 

  2. Millaruelo M, Steinert V, Komber H, Klopsch R, Voit B (2008) Macromol Chem Phys 209:366–374

    Article  CAS  Google Scholar 

  3. Jiang DD, Yao Q, McKinney MA, Wilkie CA (1999) Polym Degrad Stab 63:423–434

    Article  CAS  Google Scholar 

  4. Iumamoglu T, Yagci Y (2001) Turk J Chem 25:1–9

    Google Scholar 

  5. Park CH, Nam SY, Lee YM (1999) J Appl Polym Sci 74:83–89

    Article  CAS  Google Scholar 

  6. Sahoo SK, Nagarajan R, Roy S, Samuelson LA, Kumar J, Cholli AL (2004) Macromolecules 37:4130–4138

    Article  CAS  Google Scholar 

  7. Aslan A, Golcuk K, Bozkurt A (2012) J Polym Res 19:22

    Article  Google Scholar 

  8. Ellis J, Anstice M, Wilson AD (1991) Clin Mater 7:341–346

    Article  CAS  Google Scholar 

  9. Adusei GO, Deb S, Nicholson JW (2005) Dent Mater 21:491–497

    Article  CAS  Google Scholar 

  10. Hector LG, Opalka SM, Nitowski GA, Wieserman L, Siegel DJ, Yu H, Adams JB (2001) Surf Sci 494:1–20

    Article  CAS  Google Scholar 

  11. David G, Boutevin B, Seabrook S, Destarac M, Woodward G, Otter G (2007) Macromol Chem Phys 208:635–642

    Article  CAS  Google Scholar 

  12. Sen U, Acar O, Celik S, Bozkurt A, Ata A, Tokumasu T, Miyamoto A (2013) J Polym Res 20:217

    Article  Google Scholar 

  13. Schuster M, Rager T, Noda A, Kreuer KD, Maier J (2005) Fuel Cells 3:355–365

    Article  Google Scholar 

  14. Acar O, Sen U, Bozkurt A, Ata A (2009) Int J Hydrog Energy 34:2724–2730

    Article  CAS  Google Scholar 

  15. Aslan A, Celik S, Bozkurt A (2009) Solid State Ionics 180:1240–1245

    Article  CAS  Google Scholar 

  16. Jiang F, Kaltbeitzel A, Zhang J, Meyer WH (2014) Int J Hydrog Energy 39:11157–11164

    Article  CAS  Google Scholar 

  17. Sinirlioglu D, Mufftuoglu AE, Bozkurt A (2015) J Polym Res 22:154

    Article  Google Scholar 

  18. David G, Boyer C, Tayouo R, Seabrook S, Ameduri B, Boutevin B, Woodward G, Destarac M (2008) Macromol Chem Phys 209:75–83

    Article  CAS  Google Scholar 

  19. Kim YK, Gu L, Bryan TE, Kim JR, Chen L, Liu Y, Yoon JC, Breschi L, Pashley DH, Tay FR (2010) Biomaterials 31:6618–6627

    Article  CAS  Google Scholar 

  20. Komber H, Steinert V, Voit B (2008) Macromolecules 41:2119–2125

    Article  CAS  Google Scholar 

  21. Bingol B, Meyer WH, Wagner M, Wegner G (2006) Macromol Rapid Commun 27:1719–1724

    Article  Google Scholar 

  22. Blidi I, Geagea R, Coutelier O, Mazieres S, Violleau F, Destarac M (2012) Polym Chem 3:609–612

    Article  CAS  Google Scholar 

  23. Levin YA, Romanov VG, Ivanov BY (1975) Polym Sci USSR (Vysokomol Soyed) 17:880–886

    Article  Google Scholar 

  24. Kosolapoff GM (1952) J Am Chem Soc 74:3427–3428

    Article  CAS  Google Scholar 

  25. Kosolapoff GM (1948) J Am Chem Soc 70:1971–1972

    Article  CAS  Google Scholar 

  26. Jin S, Gonsalves KE (1998) Macromolecules 31:1010–1015

    Article  CAS  Google Scholar 

  27. Pike RM, Cohen RA (1960) J Polym Sci 44:531–538

    Article  CAS  Google Scholar 

  28. Farrokhi M, Abdollahi M (2016) J Polym Res 23:122

    Article  Google Scholar 

  29. Laguecir A, Ulrich S, Labille J, Fatin-Rouge N, Stoll S, Buffle J (2006) Eur Polym J 42:1135–1144

    Article  CAS  Google Scholar 

  30. Sutheimer SH, Ferraco MJ, Cabaniss SE (1995) Anal Chim Acta 304:187–194

    Article  CAS  Google Scholar 

  31. Sakurai M, Imai T, Yamashita F, Nakamura K, Komatsu T, Nakagawa T (1993) Polym J 25:1247–1255

    Article  CAS  Google Scholar 

  32. Arnold A, Overbeek JTG (1950) J Phys Chem 69:192–206

    CAS  Google Scholar 

  33. Nagarajan R, Tripathy S, Kumar J (2000) Macromolecules 33:9542–9547

    Article  CAS  Google Scholar 

  34. Durmus Z, Kavas H, Sozeri H, Toprak MS, Aslan A, Baykal A (2012) J Supercond Nov Magn 25:1185–1193

    Article  CAS  Google Scholar 

  35. Kavlak S, Guner A, Rzayev ZMO (2012) J Appl Polym Sci 125:3617–3629

    Article  CAS  Google Scholar 

  36. Kowalewski VJ, Kowalewski DG (1960) J Chem Phys 32:1272–1273

    Article  CAS  Google Scholar 

  37. Koenig JL (1980) Chemical microstructure of polymer chains. Wiley Interscience Publ, NY

    Google Scholar 

  38. Strandberg C, Rosenauer C, Wegner G (2010) Macromol Rapid Commun 31:374–379

    Article  CAS  Google Scholar 

  39. Katchalsky A, Shavit N, Eisenberg H (1954) J Polym Sci 13:69–84

    Article  CAS  Google Scholar 

  40. Ullner M, Jonsson B, Widmark PO (1994) J Chem Phys 100:3365–3366

    Article  CAS  Google Scholar 

  41. Reed CE, Reed WF (1992) J Chem Phys 96:1609–1620

    Article  CAS  Google Scholar 

  42. Katchalsky A (1951) J Polym Sci 7:393–412

    Article  CAS  Google Scholar 

  43. Katchalsky A, Gillis J (1949) Recl Trav Chim Pay-B 68:879–897

    Article  CAS  Google Scholar 

  44. Lappan U, Geibler U, Oelmann M, Schwarz S (2012) Colloid Polym Sci 290:1665–1670

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Abdollahi or Alireza Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherkhani, Z., Abdollahi, M. & Sharif, A. Synthesis and microstructural characterization of low to high molecular weight poly(vinylphosphonic acid)s: effect of molecular weight and temperature on acidity and polyelectrolyte behavior. J Polym Res 24, 132 (2017). https://doi.org/10.1007/s10965-017-1287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1287-3

Keywords

Navigation