Skip to main content
Log in

Starch-graft-poly(methyl acrylate) copolymer: the new approach to synthesis and copolymer characterization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The two-stage method for poly(methyl acrylate) grafting starch using triethylborane and 1,4-benzoquinone has been developed. The first stage was borylation of alcohol groups of starch. The second stage was polymerization of methyl acrylate in the inhibitor - 1,4-benzoquinone - presence accompanied by the S H 2-substitution at the boron atom. The advantages of developed method were the homogeneity of the process, the high yield of graft-copolymer, the possibility to control of chain length of synthetic polymer, and the absence of homopolymer in the final product. The molecular weight characteristics of starch-graft-poly(methyl acrylate) copolymer was determined by gel-permeation chromatography. The evidence of the graft-copolymer formation was 11B nuclear magnetic resonance data and its glass-transition temperature. The resulting graft-copolymer has an amphiphilic nature and a high thermal stability compared to the corresponding homopolymers (starch and poly(methyl acrylate)). According to the calculated values of the surface Gibbs energy the surface of starch-graft-poly(methyl acrylate) films is characterized as a high-energy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fanta GF, Burr RC, Russel CR, Rist RE (1970) Graft copolymers of starch and poly(2-hydroxy-3-methacryloyloxypropyltrimethyl-ammonium chloride). Preparation and testing as flocculating agents J Appl Polym Sci 15:2601–2609

    Article  Google Scholar 

  2. Kiatkamjornwong S, Chomsaksakul W, Sonsuk M (2000) Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide Radiat Phys Chem 59:413–427

    Article  CAS  Google Scholar 

  3. Athawale VD, Lele V (1998) Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels Carbohydr Polym 35:21–27

    Article  CAS  Google Scholar 

  4. Athawale VD, Rathi SC (1999) Graft polymerization: starch as a model substrate J Macromol Sci Polym Rev 39:445–480

    Article  Google Scholar 

  5. Carr ME, Kim S, Yoon KJ, Stanley KD (1992) Graft polymerization of cationic methacrylate, acrylamide, and acrylonitrile monomers onto starch by reactive extrusion Cereal Chem 1:70–75

    Google Scholar 

  6. Fares MM, El-faqeeh AS, Osman ME (2003) Graft copolymerization onto starch – I. Synthesis and optimization of starch grafted with N-tert-butylacrylamide copolymer and its hydrogels J Polym Res 10:119–125

    Article  CAS  Google Scholar 

  7. Li M, Lee JK, Cho UR (2012) Synthesis, characterization, and enzymatic degradation of starch-grafted poly(methyl methacrylate) copolymer films J Appl Polym Sci 125:405–414

    Article  CAS  Google Scholar 

  8. Meshrama MW, Patila VV, Mhaskeb ST, Thorat BN (2009) Graft copolymers of starch and its application in textiles Carbohydr Polym 75:71–78

    Article  Google Scholar 

  9. Gao J, Wang YJW, Chang L, Tian R (1998) Graft copolymerization of starch – AN initiated by potassium permanganate J Appl Polym Sci 68:1965–1972

    Article  CAS  Google Scholar 

  10. Zhang LM, Chen DQ (2001) Grafting of 2-(dimethylamino)ethyl methacrylate onto potato starch using potassium permanganate/sulfuric acid initiation system Starch 53:311–316

    Article  CAS  Google Scholar 

  11. Bhuniya SP, Rahman MDS, Satyanand AJ, Gharia MM, Dave AM (2003) Novel route to synthesis of allyl starch and biodegradable hydrogel by copolymerizing allyl modified starch with methacrylic acid and acrylamide J Polym Sci, Polym Chem Ed 41:1650–1658

    Article  CAS  Google Scholar 

  12. Worzakowska M, Grochowicz M (2015) Effect of some parameters on the synthesis and the physic-chemical properties of new amphiphilic starch-g-copolymers Carbohydr Polym 130:344–352

    Article  CAS  Google Scholar 

  13. Çelik M (2006) Preparation and characterization of starch–g–polymethacrylamide J Polym Res 13:427–432

    Article  Google Scholar 

  14. Pimpan V, Thothong P (2006) Synthesis of cassava starch-g-poly(methyl methacrylate) copolymers with benzoyl peroxide as an initiator J Appl Polym Sci 101:4083–4089

    Article  CAS  Google Scholar 

  15. Shogren RL, Willett JL, Biswas A (2009) HRP-mediated synthesis of starch – polyacrylamide graft copolymers Carbohydr Polym 75:189–191

    Article  CAS  Google Scholar 

  16. Wang S, Wang Q, Fan X, Xu J (2016) Synthesis and characterization of starch-poly(methyl acrylate) graft copolymers using horseradish peroxidase Carbohydr Polym 136:1010–1016

    Article  CAS  Google Scholar 

  17. Lv S, Gong R, Ma Y (2012) Structure and properties of the graft copolymer of starch and p-hydroxybenzoic acid using horseradish peroxidase Polym Adv Technol 23:1343–1349

    Article  CAS  Google Scholar 

  18. Dubrovskii SA, Kuznetsova VI (1993) Elastic properties and structure of polyacrylate–starch-based hydrogels Polym Sci Ser A 35:271–275

    CAS  Google Scholar 

  19. Liu P, Su Z (2005) Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butyl acrylate from starch granules Carbohydr Polym 62:159–163

    Article  CAS  Google Scholar 

  20. Moghaddam P, Fareghi AR, Entezami AA, Mehr MAG (2013) Synthesis of biodegradable thermoplastic copolymers based on starch by atom transfer radical polymerization (ATRP): monolayer chain growth on starch Starch 65:210–218

    Article  Google Scholar 

  21. Nurmi L, Holappa S, Mikkonen H, Seppälä J (2007) Controlled grafting of acetylated starch by atom transfer radical polymerization of MMA Eur Polym J 43:1372–1382

    Article  CAS  Google Scholar 

  22. Armarego WLF, Chai CCL (2013) Purification of laboratory chemicals. Elsevier, Oxford

    Google Scholar 

  23. Kaelble DH (1971) Physical chemistry of adhesion. Wiley Interscience, New York

    Google Scholar 

  24. Rukenstein E, Lee SH (1987) Estimation of the equilibrium surface free energy of restructuring solid surfaces J Colloid Interface Sci 120:153–161

    Article  Google Scholar 

  25. Kojima K, Yoshikuri M, Suzuki T (1979) Tributylborane-initiated grafting of methyl metharcylate onto chitin J Appl Polym Sci 24:1587–1593

    Article  CAS  Google Scholar 

  26. Kojima K, Iwabuchi S, Murahami K, Kojima K, Ichikawa F (1972) The grafting of methyl methacrylate onto cotton by tri-n-butylborane J Appl Polym Sci 16:1139–1148

    Article  CAS  Google Scholar 

  27. Kojima K, Iwabuchi S, Kojima K (1971) The trialkylborane-initiated graft copolymerization of methyl methacrylate onto hemoglobin Bull Chem Soc Jpn 44:1891–1895

    Article  CAS  Google Scholar 

  28. Bubnov YuN, Zaremski MYu, Gurski ME (2012) The method of production graft copolymers of methyl methacrylate and polyisoprene. Russian Patent 2461580

  29. Lu B, Chung TCM (1998) Maleic anhydride modified polypropylene with controllable molecular structure: new synthetic route via borane–terminated polypropylene Macromolecules 31:5943–5946

    Article  CAS  Google Scholar 

  30. Zaremski MY, Garina ES, Gurskii ME, Bubnov YN (2013) Organoboranes – atmospheric oxygen systems as unconventional initiators of radical polymerization Polym Sci Ser B 55:304–326

    Article  CAS  Google Scholar 

  31. Zaremski MY, Budanov DV, Romanov SA, Plutalova AV, Garina ES, Golubev VB, Erdyakov SY, Gurskii ME, Bubnov YN (2011) An unusual mechanism of polymerization of MMA initiated by ammonia – triisobutyl borane and atmospheric oxygen Polym Sci Ser B 53:1–9

    Article  CAS  Google Scholar 

  32. Dodonov VA, Kuznetsova YL, Vilkova AI, Skuchilina AS, Nevodchikov VI, Beloded LN (2007) Uncontrolled pseudoliving free-radical polymerization of methyl methacrylate in the presence of butyl-p-benzoquinones Rus Chem Bull 56:1162–1165

    Article  CAS  Google Scholar 

  33. Kuznetsova YL, Chesnokov SA, Zaitsev SD, Ludin DV (2012) The catalytic system tri-n-butyl boron – p-quinone in the free-radical polymerization of styrene Polym Sci Ser B 54:434–442

    Article  CAS  Google Scholar 

  34. Ludin DV, Kuznetsova YL, Zaitsev SD (2015) Tri-n-butylboron – p-quinone catalytic system in synthesis of block copolymers Rus J Appl Chem 88:295–301

    Article  CAS  Google Scholar 

  35. Ludin DV, Kuznetsova YL, Grishin ID, Kuropatov VA, Zaitsev SD (2016) Controlled radical polymerization of alkyl acrylates in the presence of the tri-n-butylborane – p-quinone system Rus Chem Bull 65:1859–1866

    Article  CAS  Google Scholar 

  36. Ludin DV, Kuznetsova YL, Zaitsev SD (2016) Copolymerization of styrene with methyl methacrylate in the presence of the system tributylborane – p-quinone Polym Sci Ser B 58:503–509

    Article  CAS  Google Scholar 

  37. Ludin DV, Kuznetsova YL, Zamyshlyaeva OG, Zaitsev SD (2017) Controlled radiacal copolymerization of styrene and tert-butyl acrylate in the presence of tri-n-butylborane – p-quinone catalytic system Polym Sci Ser B 59:7–15

    Article  CAS  Google Scholar 

  38. Köster R, Amen K-L, Dahloff WV (1975) O-Dialkylborylierungen von sacchariden und polyolen Liebigs Ann Chem 1975:752–788

    Article  Google Scholar 

  39. Brown HC, Hébert NC (1983) Protonolysis of triethylborane with carboxylic acids J Organomet Chem 255:135–141

    Article  CAS  Google Scholar 

  40. Leach HW (1963) Determination of intrinsic viscosity of starches Cereal Chem 40:593–600

    CAS  Google Scholar 

  41. Dalhoff WV, Köster R (1977) Boron compounds. 45. 6-Deoxy-O-acyl-α-L-mannofuranoses via O-Ethylboranediyl derivatives J Org Chem 42:3151–3157

    Article  Google Scholar 

  42. Kice JL (1956) Inhibition in polymerization. II. methyl acrylate J Polym Sci Polym Chem Ed 19:123–140

    CAS  Google Scholar 

  43. Nöth H, Wrackmeyer B (1978) NMR basic principles and progress. Nuclear magnetic resonance spectroscopy of boron compounds. Springer–Verlag, Berlin

    Book  Google Scholar 

  44. Peng L, Yu L, Liu H, Chan L, Lin L (2009) Glass transition temperature of starch by a high-speed DSC Carbohydr Polym 77:250–253

    Article  Google Scholar 

  45. Singh V, Tiwari A, Pandey S, Singh SK (2007) Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile) under microwave irradiation Express Polym Lett 1:51–58

    Article  CAS  Google Scholar 

  46. Athawale VD, Lele V (2000) Thermal studies on granular maize starch and its graft copolymers with vinyl monomers Starch 52:205–213

    Article  CAS  Google Scholar 

  47. Men Y, Du X, Shen J, Wang L, Liu Z (2015) Preparation of corn starch-g-polystyrene copolymer in ionic liquid: 1-Ethyl-3-methylimidazolium acetate Carbohydr Polym 121:348–354

    Article  CAS  Google Scholar 

  48. Kiatkamjornwong S, Thakeow P, Sonsuk M (2001) Chemical modification of cassava starch for degradable polyethylene sheets Polym Degrad Stab 73:363–375

    Article  CAS  Google Scholar 

  49. Ludin DV, Markin AV, Zaitsev SD, Shuvalov SE, Kuznetsova YL (2016) Thermal behavior of polymers prepared using the tri-n-butylboron – p-quinone system Rus J Appl Chem 89:921–925

    Article  CAS  Google Scholar 

  50. Zamyshlyayeva OG, Lapteva OS, Baten’kin MA, Semchikov YD, Mel’nikova NB (2014) Self-organization and aggregation of amphiphilic block copolymers of N-vinylpyrrolidone–block–2,2,3,3-tetrafluoropropylmethacrylate at interfaces Rus Chem Bull 63:1823–1836

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Ministry of Education and Science of the Russian Federation (project No. 4.5706.2017/BCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii V. Ludin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludin, D.V., Zaitsev, S.D., Kuznetsova, Y.L. et al. Starch-graft-poly(methyl acrylate) copolymer: the new approach to synthesis and copolymer characterization. J Polym Res 24, 117 (2017). https://doi.org/10.1007/s10965-017-1280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1280-x

Keywords

Navigation