Skip to main content

Advertisement

Log in

Star poly(4-vinylpyridine)s using dendritic ATRP initiators: Synthesis, electrolyte property and performance in dye sensitized solar cell

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The G0 and G1 polyurethane dendrimers terminated with 3–12 atom transfer radical polymerization (ATRP) initiators were prepared using single and dual functional ATRP reagents and their structures were confirmed using FT-IR, 1H–NMR, HR-MS and SEC-MALLS techniques. 4-Vinylpyridine was polymerized using the G1 dendritic initiators to obtain six- and twelve-arm star poly(4-vinylpyridine)s (STAR-P1 and STAR-P2). The absolute molecular weight and PDI of star polymers were in the order of 105 and 1.23–1.24 respectively. Hydrolysis leading to degradation of inner polyurethane core of the star polymers yielded more narrow dispersed poly(4-vinylpyridine) chains and the SEC-MALLS data of these chains confirm the accurate control on number of arms. Both of the polymers were doped with KI/I2 along with N3-dye to work as efficient polymer electrolytes for dye sensitized solar cell (DSSC). The increment in the conductivity of doped STAR-P1 was very significant and reached 2.415 mS/m from 0.0066 mS/m of dopant salt. The current-voltage characteristics of these doped polymer electrolytes measured under simulated sun light with AM 1.5 at 40 mW/cm2 yielded energy conversion efficiency (η) of 5.13% and 1.90% for STAR-P1 and STAR-P2 respectively and these values also significantly high compared to 1.09% corresponds to current-voltage curve of the device fabricated without the polymers.

Star poly(4-vinylpyridine)s were prepared using novel dendritic ATRP initiators and used as electrolytes for dye sensitized solar cell (DSSC); one of the cells showed 5.13% energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moller M, Matyjaszewski K (2012) Polymer Science: a comprehensive reference, macromolecular architecture and soft Nano-objects, In: Muller AHE, Wooly KL (eds) vol 6. Elsevier, Amsterdam, pp 1–350

  2. Brigitte IV, Albena L (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects Chemical Reviews 109:5924–5973

    Article  Google Scholar 

  3. Valrie S, Robert J, Christophe D (2008) In-situ Nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization Chemical Reviews 108:1104–1126

    Article  Google Scholar 

  4. Per BZ, Yasuyuki K, Masayoshi O (2008) Controlled/living radical polymerization in dispersed systems Chemical Reviews 108:3747–3794

    Article  Google Scholar 

  5. Craig JH, Anton WB, Eva H (2001) New polymer synthesis by Nitroxide mediated living radical polymerizations Chemical Reviews 101:3661–3688

    Article  Google Scholar 

  6. Krzysztof M, Jianhui X (2001) Atom transfer radical polymerization Chemical Reviews 101:2921–2990

    Article  Google Scholar 

  7. Masami K, Tsuyoshi A, Mitsuo S (2001) Metal-catalyzed living radical polymerization Chemical Reviews 101:3689–3745

    Article  Google Scholar 

  8. Nikos H, Marinos P, Stergios P, Hermis I (2001) Polymers with complex architecture by living anionic polymerization Chemical Reviews 101:3747–3792

    Article  Google Scholar 

  9. Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels Progress in Polymer Science 34:317–350

    Article  CAS  Google Scholar 

  10. Weigang WW, Li WJ (2015) Star polymers: advances in biomedical applications Progress in Polymer Science 46:55–85

    Article  Google Scholar 

  11. Veerapandian S, Amudha S, Rahman A, Suthanthiraraj A, Nasar AS (2015) Enhanced performance of a nanocrystalline dye-sensitized solar cell based on polyurethane dendrimers RSC Advances 5:31404–31409

    Article  CAS  Google Scholar 

  12. Nasar AS, Veerapandian S (2015) Dendritic-linear hybrid Multiarm star polymers: a straightforward synthesis of polymer as molecular nanoparticles Macromolecular Chemistry and Physics 216:2404–2412

    Article  CAS  Google Scholar 

  13. Terashima T, Nomura A, Ito M, Ouchi M, Sawamoto M (2011) Star-polymer-catalyzed living radical polymerization: Microgel-Core reaction vessel by tandem catalyst interchange Angewandte Chemie, International Edition 50:7892–7895

    Article  CAS  Google Scholar 

  14. Moller M, Matyjaszewski K (2012) Polymer Science: a comprehensive reference, macromolecular architecture and soft Nano-objects, In: Muller AHE, Wooly KL (eds), vol 6. Elsevier, Amsterdam, pp 104–105

  15. Cameron DJAC, Shaver MP (2011) Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology Chemical Society Reviews 40:1761–1776

    Article  CAS  Google Scholar 

  16. Gheybi H, Adeli M (2015) Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers Polymer Chemistry 6:2580–2615

    Article  CAS  Google Scholar 

  17. Tucker BS, Gatchell SG, Hill MR, Sumerlin BS (2015) Facile synthesis of drug-conjugated PHPMA core-crosslinked star polymers Polymer Chemistry 6:4258–4263

    Article  CAS  Google Scholar 

  18. Yang X, Shang H, Ding C, Li J (2015) Recent developments and applications of bioinspired dendritic polymers Polymer Chemistry 6:668–680

    Article  CAS  Google Scholar 

  19. Xie C, Yang C, Zhang P, Zhang J, Wu W, Jiang X (2015) Synthesis of drug-crosslinked polymer nanoparticles Polymer Chemistry 6:1703–1713

    Article  CAS  Google Scholar 

  20. Roovers J, Zhou LL, Toporowski PM, Vanderzwan M, Iatrou H, Hadjichristidis N (1993) Regular star polymers with 64 and 128 arms models for polymeric micelles Macromolecules 26:4324–4331

    Article  CAS  Google Scholar 

  21. Gao H, Min K, Matyjaszewski K (2006) Characterization of linear and 3-arm star block copolymers by liquid chromatography at critical conditions Macromolecular Chemistry and Physics 207:1709–1717

    Article  CAS  Google Scholar 

  22. Matyjaszewski K, Miller PJ, Pyun J, Kickelbick G, Diamanti S (1999) Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators Macromolecules 32:6526–6535

    Article  CAS  Google Scholar 

  23. Han D, Tong X, Zhao Y (2012) Synthesis and characterization of six-arm star polystyrene-block-poly (3-hexylthiophene) copolymer by combination of atom transfer radical polymerization and click reaction Journal of Polymer Science, Part A: Polymer Chemistry 50:4198–4205

    Article  CAS  Google Scholar 

  24. An L, Fan S, Zhou C (2008) Synthesis of silica@a-Fe2O3 nanospheres by surface-initiated ATRP European Polymer Journal 44:2005–2009

    Article  CAS  Google Scholar 

  25. Pang X, Zhao L, Akinc M, Kim JK, Lin Z (2011) Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles Macromolecules 44:3746–3752

    Article  CAS  Google Scholar 

  26. Mishra V, Kumar R (2011) Synthesis and characterization of five-arms star polymer of N-vinyl pyrrolidone through ATRP based on glucose Carbohydrate Polymers 83:1534–1540

    Article  CAS  Google Scholar 

  27. Heise A, Diamanti S, Hedrick JL, Frank CW, Miller RD (2001) Investigation of the initiation behavior of a dendritic 12-arm initiator in atom transfer radical polymerization Macromolecules 34:3798–3801

    Article  CAS  Google Scholar 

  28. Zhao YL, Cai Q, Jiang J, Shuai XT, Bei JZ, Chen CF, Xi F (2002) Synthesis and thermal properties of novel star-shaped poly(l-lactide)s with starburst PAMAM–OH dendrimer macroinitiator Polymer 43:5819–5825

    Article  CAS  Google Scholar 

  29. Zhao Y, Shuai X, Chen C, Xi F (2004) Synthesis of star block copolymers from dendrimer initiators by combining ring-opening polymerization and atom transfer radical polymerization Macromolecules 37:8854–8862

    Article  CAS  Google Scholar 

  30. Zhao Y, Chen Y, Chen C, Xi F (2005) Synthesis of well-defined star polymers and star block copolymers from dendrimer initiators by atom transfer radical polymerization Polymer 46:5808–5819

    Article  CAS  Google Scholar 

  31. Yin M, Bauer R, Klapper M, Mullen K (2007) Amphiphilic multicore-Shell particles based on Polyphenylene dendrimers Macromolecular Chemistry and Physics 208:1646–1656

    Article  CAS  Google Scholar 

  32. Kim YH, Ford WT, Mourey TH (2007) Branched poly(styrene-b-tert-butyl acrylate) and poly(styrene-b-acrylic acid) by ATRP from a dendritic poly(propylene imine)(NH2)64 core Journal of Polymer Science, Part A: Polymer Chemistry 45:4623–4634

    Article  CAS  Google Scholar 

  33. Sun G, Guan Z (2010) Synthesis and investigation of Core-Shell dendritic nanoparticles with tunable Thermosensitivity Macromolecules 43:9668–9673

    Article  CAS  Google Scholar 

  34. Van Renterghem LM, Lammens M, Dervaux B, Viville P, Lazzaroni R, Du Prez FE (2008) Design and use of organic nanoparticles prepared from star-shaped polymers with reactive end groups Journal of the American Chemical Society 130:10802–10811

    Article  Google Scholar 

  35. Shen Z, Chen Y, Barriau E, Frey H (2006) Multi-arm star polyglycerol-block-poly(tert-butyl acrylate) and the respective multi-arm poly(acrylic acid) stars Macromolecular Chemistry and Physics 207:57–64

    Article  CAS  Google Scholar 

  36. Shi P, Li Q, He X, Li S, Sun P, Zhang W (2014) A new strategy to synthesize temperature- and pH-sensitive Multicompartment block copolymer nanoparticles by two macro-RAFT agents Comediated dispersion polymerization Macromolecules 47:7442–7452

    Article  CAS  Google Scholar 

  37. Lu CH, Wang JH, Chang FC, Kuo SW (2010) Star block copolymers through Nitroxide-mediated radical polymerization from polyhedral oligomeric Silsesquioxane (POSS) Core Macromolecular Chemistry and Physics 211:1339–1347

    Article  CAS  Google Scholar 

  38. Miura Y, Dote H (2005) Syntheses of 12-arm star polymers and star diblock copolymers by nitroxide-mediated radical polymerization using dendritic dodecafunctional macroinitiators Journal of Polymer Science, Part A: Polymer Chemistry 43:3689–3700

    Article  CAS  Google Scholar 

  39. Liu J, Hameed N, Guo Q (2010) Complexation and eutectic crystallization in poly(2-vinyl pyridine)-block-poly(e-caprolactone) and pentadecylphenol mixtures European Polymer Journal 46:2290–2299

    Article  CAS  Google Scholar 

  40. Huo F, Li S, Li Q, Qu Y, Zhang W (2014) In-situ synthesis of Multicompartment nanoparticles of linear BAC triblock Terpolymer by seeded RAFT polymerization Macromolecules 47:2340–2349

    Article  CAS  Google Scholar 

  41. Ihre H, Hult A, Soderlind E (1996) Synthesis, characterization, and 1H NMR Self-diffusion studies of dendritic aliphatic polyesters based on 2,2-Bis(hydroxymethyl)propionic acid and 1,1,1-Tris(hydroxyphenyl)ethane Journal of the American Chemical Society 118:6388–6395

    Article  CAS  Google Scholar 

  42. Veerapandian S, Nasar AS (2015) Amine- and blocked isocyanate-terminated polyurethane dendrimers: integrated synthesis, photophysical properties and application in a heat curable system RSC Advances 5:3799–3806

    Article  CAS  Google Scholar 

  43. McRae S, Chen X, Kratz K, Samanta D, Henchey E, Schneider S, Emrick T (2012) Pentafluorophenyl Ester-functionalized Phosphorylcholine polymers: preparation of linear, two-arm, and grafted polymer–protein conjugates Biomacromolecules 13:2099–2109

    Article  CAS  Google Scholar 

  44. Nasar AS, Kalaimani S (2016) Synthesis and studies on forward and reverse reactions of phenol-blocked polyisocyanates: an insight into blocked isocyanates RSC Advances 6:76802–76812

    Article  CAS  Google Scholar 

  45. Rosselgong J, Williams EGL, Le TP, Grusche F, Hinton TM, Tizard M, Gunatillake P, Thang SH (2013) Core degradable star RAFT polymers: synthesis, polymerization, and degradation studies Macromolecules 46:9181–9188

    Article  CAS  Google Scholar 

  46. Terashima T, Nishioka S, Koda Y, Takenaka M, Sawamoto M (2014) Arm-cleavable Microgel star polymers: a versatile strategy for direct Core analysis and functionalization Journal of the American Chemical Society 136:10254–11025

    Article  CAS  Google Scholar 

  47. Wei X, Moad G, Muir BW, Rizzardo E, Rosselgong J, Yang W, Thang SH (2014) An arm-first approach to cleavable Mikto-arm star polymers by RAFT polymerization Macromolecular Rapid Communications 35:840–845

    Article  CAS  Google Scholar 

  48. Hawker CJ (1995) Architectural control in “living” free radical polymerizations: preparation of star and graft polymers Angewandte Chemie, International Edition 34:1456–1459

    Article  CAS  Google Scholar 

  49. Hawker CJ, Frechet JMJ, Grubbs RB, Dao J (1995) Preparation of Hyperbranched and star polymers by a "living", Self-condensing free radical polymerization Journal of the American Chemical Society 117:10763–10764

    Article  CAS  Google Scholar 

  50. Ki MR, Park SH, Kim JU, Lee JN (2011) Dye-sensitized solar cells based on polymer electrolytes: solar cells-dye sensitized devices. In: Kosyachenko LA (ed). Intech Publications, Rijeka, pp 223–244

  51. Benedettia JE, Goncalves AD, Formiga ALB, De Paoli MA, Li X, Durrant JR, Nogueira AF (2010) A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cels Journal of Power Sources 195:1246–1255

    Article  Google Scholar 

  52. Sylvianti N, Do TT, Marsya MA, Park J, Kang YC, Kim JH (2016) Self assembled poly(4-vinylpyridine) as an interfacial layer for polymer solar cells Bulletin of the Korean Chemical Society 37:13–18

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (S.S and A.S.N) gratefully acknowledge CSIR, India, for financial support under a Scheme No. 02(0100)/12/EMR-II. Dt. 31-10-2012. One of the authors (A.G) thanks to CSIR, India, for awarding Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sultan Nasar.

Electronic supplementary material

ESM 1

(DOC 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, A., Sathiyaraj, S. & Sultan Nasar, A. Star poly(4-vinylpyridine)s using dendritic ATRP initiators: Synthesis, electrolyte property and performance in dye sensitized solar cell. J Polym Res 24, 116 (2017). https://doi.org/10.1007/s10965-017-1274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1274-8

Keywords

Navigation