Skip to main content

Biopolymer brushes grown on PDMS contact lenses by in situ atmospheric plasma-induced polymerization

Abstract

It is critical for silicone based-contact lens development by improving surface characterization to prevent protein adsorption. In this paper, the silicone (polydimethylsiloxane, PDMS) contact lenses were modified by varied molecular weights of poly(ethylene glycol) methacrylate (PEGMA, Mw 360 and 500 Da) polymer brushes by in situ atmospheric plasma-induced surface copolymerization. After PDMS contact lenses were homogenously immersed in PEGMA monomer solutions, varied gases (oxygen, nitrogen, and argon) with the atmospheric plasma were employed in the process of polymerization. The characterizations of PEGMA polymer brushes modified on the PDMS contact lenses would be evaluated by atomic force microscopy, FT-IR spectroscopy, X-ray photoelectron spectroscopy, and contact angle test. The results show that the hydrophilicity of the PEGMA polymer brush-modified surface is obviously improved. The contact angle of PEGMA-modified surface decreases about 20°–40° by varied atmospheric plasma (O2, N2, and Ar gases), compared to the pristine lenses. Importantly, the hydrophilicity of the PEGMA polymer brush-modified surface could be retained beyond 2 weeks. PEGMA-modified PDMS contact lenses also display superior anti-protein (fibrinogen and human serum bovine) adsorption ability. Therefore, immobilization of PEGMA polymer brushes by in situ atmospheric plasma-induced polymerization would be a great and rapid method to enhance the hydrophilicity and anti-protein adsorption ability in the PDMS contact lenses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Kim HJ, Zhang K, Moore L, Ho D (2014) Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8:2998

    Article  CAS  Google Scholar 

  2. Paradiso P, Chu V, Santo L, Serro AP, Colaco R, Saramago B (2015) Effect of plasma treatment on the performance of two drug-loaded hydrogel formulations for therapeutic contact lenses. J Biomed Mater Res B Appl Biomater 103:1059

    Article  CAS  Google Scholar 

  3. Bozukova D, Pagnoulle C, De Pauw-Gillet MC, Desbief S, Lazzaroni R, Ruth N, Jérôme R, Jérôme C (2007) Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings. Biomacromolecules 8:2379

    Article  CAS  Google Scholar 

  4. Chen SH, Chang Y, Lee KR, Wei TC, Higuchi A, Ho FM, Tsou CC, Ho HT, Lai JY (2012) Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization. Langmuir 28:17733

    Article  CAS  Google Scholar 

  5. Sin MC, Chen SH, Chang Y (2014) Hemocompatibility of zwitterionic interfaces and membranes. Polym J 46:436

    Article  CAS  Google Scholar 

  6. Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH (2011) Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces 3:1228

    Article  CAS  Google Scholar 

  7. Chang Y, Chang Y, Higuchi A, Shih YJ, Li PT, Chen WY, Tsai EM, Hsiue GH (2012) Bioadhesive control of plasma proteins and blood cells from umbilical cord blood onto the interface grafted with zwitterionic polymer brushes. Langmuir 28:4309

    Article  CAS  Google Scholar 

  8. Chien HW, Tsai CC, Tsai WB, Wang MJ, Kuo WH, Wei TC, Huang ST (2013) Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption. Colloids Surf B Biointerfaces 107:152

    Article  CAS  Google Scholar 

  9. Bhatt S, Pulpytel J, Arefi-Khonsari F (2015) Low and atmospheric plasma polymerisation of nanocoatings for bio-applications. Surface Innovations 3:63

    Article  Google Scholar 

  10. Chang Y, Shih YJ, Ko CY, Jhong JF, Liu YL, Wei TC (2011) Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation. Langmuir 27:5445

    Article  CAS  Google Scholar 

  11. Ye Y, Huang J, Wang X (2015) Fabrication of a self-cleaning surface via the thermosensitive copolymer brush of P(NIPAAm-PEGMA). ACS Appl Mater Interfaces 7:22128

    Article  CAS  Google Scholar 

  12. Jiang J, Zhang P, Zhu L, Zhu B, Xu Y (2015) Improving antifouling ability and hemocompatibility of poly(vinylidene fluoride) membranes by polydopamine-mediated ATRP. J Mater Chem B 3:7698

    Article  CAS  Google Scholar 

  13. Owen MJ, Smith PJ (1994) Plasma treatment of polydimethylsiloxane. J Adhesion Science Technology 8:1063

    Article  CAS  Google Scholar 

  14. Chen JT, Fu YJ, Tung KL, Huang SH, Hung WS, Jessie Lue S, Hu CC, Lee KR, Lai JY (2013) Surface modification of poly(dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes. J Membrane Science 440:1

    Article  CAS  Google Scholar 

  15. Shi C, Yuan W, Khan M, Li Q, Feng Y, Yao F, Zhang W (2015) Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation. Mater Sci Eng C Mater Biol Appl 50:201

    Article  CAS  Google Scholar 

  16. Simaite A, Tondu B, Soueres P, Bergaud C (2015) Hybrid PVDF/PVDF-graft-PEGMA membranes for improved interface strength and lifetime of PEDOT:PSS/PVDF/ionic liquid actuators. ACS Appl Mater Interfaces 7:19966

    Article  CAS  Google Scholar 

  17. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14:590

    Article  CAS  Google Scholar 

  18. Lin CH, Yeh YH, Lin WC, Yang MC (2014) Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf B Biointerfaces 123:986

    Article  CAS  Google Scholar 

  19. Bettuelli M, Trabattoni S, Fagnola M, Tavazzi S, Introzzi L, Farris S (2013) Surface properties and wear performances of siloxane-hydrogel contact lenses. J Biomed Mater Res B Appl Biomater 101:1585

    Article  Google Scholar 

  20. Mills KL, Zhu X, Takayama S, Thouless MD (2008) The mechanical properties of a surface-modified layer on poly(dimethylsiloxane). J Mater Res 23:376

    Article  Google Scholar 

  21. Qu W, Hooymans JM, Qiu J, de-Bont N, Gelling OJ, van der Mei HC, Busscher HJ (2013) Nonadhesive silica nanoparticles-based brush-coated contact lens cases—compromising between ease of cleaning and microbial transmission to contact lenses. J Biomed Mater Res B Appl Biomater 101:640

    Article  Google Scholar 

  22. Chen L, Liu G, Liu S, Bai L, Wang Y (2014) Preparation and characterization of brush-like PEGMA-graft-PDA coating and its application for protein separation by CE. J Biomater Sci Polym Ed 25:1306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Technology of Taiwan (MOST 105-2221-E-131-026, and MOST 105-2622-E-131-001-CC2), and the Ministry of Education (104B-38-021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Yu Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, JS., Liu, TY., Tsou, HM. et al. Biopolymer brushes grown on PDMS contact lenses by in situ atmospheric plasma-induced polymerization. J Polym Res 24, 69 (2017). https://doi.org/10.1007/s10965-017-1230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1230-7

Keywords

  • Silicone contact lenses
  • Poly(ethylene glycol) methacrylate
  • In situ atmospheric plasma polymerization
  • Anti-protein adsorption