Skip to main content
Log in

Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2O3 membrane for CO2/CH4 separation using response surface methodology

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, the response surface methodology (RSM) based on the central composite design (CCD) was used to examine effects of different gamma alumina (γ-Al2O3) loadings (0 to 8 wt.%) and various polyethylene glycol 1000 (PEG1000) contents (0 to 40 wt.%) as parameters on membrane preparation. Accordingly, pure carbon dioxide (CO2) and methane (CH4) gasses permeability and ideal CO2/CH4 selectivity values were considered as responses. Poly (ether block amide) 1657 (Pebax1657) was used as the base polymer matrix for the membranes fabrication. The neat Pebax1657 membrane was prepared via solution casting-solvent evaporation method and the other membranes were prepared via solution blending technique. Analysis of variance (ANOVA) was used to analyze the experiments statistically and the results indicated that the optimized amounts of γ-Al2O3 nanoparticles and PEG1000 in order to enhance both CO2 permeability and ideal CO2/CH4 selectivity were 8 wt.% and 10 wt.%, respectively. Additionally, a comparison between the separation performance of the neat membrane, the nanocomposite membrane with the optimum amount of γ-Al2O3 nanoparticles, the blended membrane with optimum amounts of PEG1000, and the blended nanocomposite membrane with optimum amounts of γ-Al2O3 nanoparticles and PEG1000 was presented. The obtained gas permeation results showed that the blended nanocomposite membrane exhibits the highest CO2/CH4 separation performance compared to the neat Pebax membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36:4467–4475

    Article  CAS  Google Scholar 

  2. Adewole JK, Ahmad AL, Sultan AS, Ismail S, Leo CP (2015) Model-based analysis of polymeric membranes performance in high pressure CO2 removal from natural gas. J Polym Res 22:32

    Article  Google Scholar 

  3. Cong H, Yu B, Tang J, Zhao XS (2012) Ionic liquid modified poly(2,6-dimethyl-1,4-phenylene oxide) for CO2 separation. J Polym Res 19:9761

    Article  Google Scholar 

  4. Car A, Stropnik C, Yave W, Peinemann K-V (2008) Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep Purif Technol 62:110–117

    Article  CAS  Google Scholar 

  5. Desideri U, Corbelli R (1998) CO2 capture in small size cogeneration plants: technical and economical considerations. Energy Convers Manag 39:857–867

    Article  CAS  Google Scholar 

  6. Minhas FT, Farrukh S, Hussain A, Mujahid M (2015) Comparison of silica and novel functionalized silica-based cellulose acetate hybrid membranes in gas permeation study. J Polym Res 22:63

    Article  Google Scholar 

  7. Car A, Stropnik C, Yave W, Peinemann K-V (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. Membr Scie 307:89–95

    Google Scholar 

  8. Yave W, Car A, Peinemann K-V (2010) Nanostructured membrane material designed for carbon dioxide separation. J Membr Sci 350:124–129

    Article  CAS  Google Scholar 

  9. Ravanchi MT, Sahebdelfar S, Zangeneh FT (2011) Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Front Chem Sci Eng 5:173–178

    Article  CAS  Google Scholar 

  10. Dai Y, Ruan X, Bai F, Yu M, Li H, Zhao Z, He G (2016) High solvent resistance PTFPMS/PEI hollow fiber composite membrane for gas separation. Appl Surf Sci 360:164–173

  11. Suhaimi HSM, Khir MNIM, Leo CP, Ahmad AL (2014) Preparation and characterization of polysulfone mixed-matrix membrane incorporated with palladium nanoparticles dispersed in polyvinylpyrrolidone for hydrogen separation. J Polym Res 21:428

    Article  Google Scholar 

  12. Nie F, He G, Zhao W, Ju J, Liu Y, Dai Y (2013) Improving CO2 separation performance of the polyethylene glycol (PEG)/polytrifluoropropylsiloxane (PTFPMS) blend composite membrane. J Polym Res 21:319

  13. Anson M, Marchese J, Garis E, Ochoa N, Pagliero C (2004) ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. J Membr Sci 243:19–28

    Article  CAS  Google Scholar 

  14. Feron PHM, Jansen AE, Klaassen R (1992) Membrane technology in carbon dioxide removal. Energy Convers Manag 33:421–428

    Article  CAS  Google Scholar 

  15. Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    Article  CAS  Google Scholar 

  16. Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly(ethylene oxide). J Membr Sci 239:105–117

    Article  CAS  Google Scholar 

  17. Lin H, Freeman BD (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739:57–74

    Article  CAS  Google Scholar 

  18. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    Article  CAS  Google Scholar 

  19. Habibzare S, Asghari M, Djirsarai A (2014) Nano composite PEBAX®/PEG membranes: effect of MWNT filler on CO2/CH4 separation. Int J Nano Dimen 5:247–254

  20. Azizi N, Mohammadi T, Behbahani RM (2016) Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. J Energy Chem (in Press)

  21. Rahman MM, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan MM, Abetz V (2013) PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. J Membr Sci 437:286–297

    Article  CAS  Google Scholar 

  22. Jou Y, Lin W, Lee W, Yeh T (2014) Integrating the Taguchi method and response surface methodology for process parameter optimization of the injection molding. Appl Math Inf Sci 8:1277–1285

    Article  Google Scholar 

  23. Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J Hazard Mater 171:551–562

    Article  CAS  Google Scholar 

  24. Ahmad AL, Abdulkarim AA, Ismail S, Seng OB (2016) Optimization of PES/ZnO mixed matrix membrane preparation using response surface methodology for humic acid removal. Korean J Chem Eng 33:997–1007

    Article  CAS  Google Scholar 

  25. Mirmohseni A, Zavareh S (2011) Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology. J Polym Res 18:509–517

    Article  CAS  Google Scholar 

  26. Liu L, Chakma A, Feng X (2006) Propylene separation from nitrogen by poly(ether block amide) composite membranes. J Membr Sci 279:645–654

    Article  CAS  Google Scholar 

  27. Bondar VI, Freeman BD, Pinnau I (2000) Gas transport properties of poly(ether-b-amide) segmented block copolymers. J Polym Sci B Polym Phys 38:2051–2062

    Article  CAS  Google Scholar 

  28. Konyukhova EV, Buzin AI, Godovsky YK (2002) Melting of polyether block amide (Pebax): the effect of stretching. Thermochim Acta 391:271–277

    Article  CAS  Google Scholar 

  29. Mahmoudi A, Asghari M, Zargar V (2015) CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. J Ind Eng Chem 23:238–242

    Article  CAS  Google Scholar 

  30. Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z (2014) Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J Membr Sci 460:62–70

    Article  CAS  Google Scholar 

  31. Azizi N, Mohammadi T, Behbahani RM (2017) Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. J Nat Gas Sci Eng 37:39–51

    Article  CAS  Google Scholar 

  32. Yong Z, Mata V, Rodrigues AE (2000) Adsorption of carbon dioxide on basic alumina at high temperatures. J Chem Eng Data 45:1093–1095

    Article  CAS  Google Scholar 

  33. Songolzadeh M, Ravanchi MT, Soleimani M (2012) Carbon dioxide capture and storage: a general review on adsorbents. World Acad Sci Eng Technol 70:225–232

    Google Scholar 

  34. Esmaili J, Ehsani M (2013) Study on the effect of preparation parameters of K2CO3/Al2O3 sorbent on CO2 capture capacity at flue gas operating conditions. J Encapsulation Adsorpt Sci 3:57–63

    Article  Google Scholar 

  35. Okunev AG, Sharonov VE, Gubar AV, Danilova IG, Paukshtis EA, Moroz EM, Kriger TA, Malakhov VV, Aristov YI (2003) Sorption of carbon dioxide by the composite sorbent “potassium carbonate in porous matrix”. Russ Chem Bull 52:359–363

    Article  CAS  Google Scholar 

  36. Azizi N, Mohammadi T, Mosayebi Behbahani R (2017) Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 117:177–189

    Article  CAS  Google Scholar 

  37. Isanejad M, Azizi N, Mohammadi T (2017) Pebax membrane for CO2/CH4 separation: effects of various solvents on morphology and performance. J Appl Polym Sci 134

  38. Ismail AF, Lai PY (2004) Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology. Sep Purif Technol 40:191–207

    Article  CAS  Google Scholar 

  39. Arzani M, Mahdavi HR, Bakhtiari O, Mohammadi T (2016) Preparation of mullite ceramic microfilter membranes using response surface methodology based on central composite design. Ceram Int 42:8155–8164

    Article  CAS  Google Scholar 

  40. Bayat A, Mahdavi HR, Kazemimoghaddam M, Mohammadi T (2016) Preparation and characterization of γ-alumina ceramic ultrafiltration membranes for pretreatment of oily wastewater. Desalin Water Treat:57:24322–24332

  41. Stern SA (1968) The “Barrer” permeability unit. J Polym Sci Part A-2: Polym Phys 6:1933–1934

    Article  CAS  Google Scholar 

  42. Kim JH, Lee YM (2001) Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. J Membr Sci 193:209–225

    Article  CAS  Google Scholar 

  43. Ismail AF, Khulbe KC, Matsuura T (2015) Gas separation membranes: polymeric and inorganic. Springer International, New York

  44. Rabiee H, Ghadimi A, Abbasi S, Mohammadi T (2015) CO2 separation performance of poly(ether-b-amide6)/PTMEG blended membranes: permeation and sorption properties. Chem Eng Res Des 98:96–106

    Article  CAS  Google Scholar 

  45. Hosseinzadeh Beiragh H, Omidkhah M, Abedini R, Khosravi T, Pakseresht S (2016) Synthesis and characterization of poly (ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia Pac J Chem Eng 11:522–532

  46. Shariati A, Omidkhah M, Pedram MZ (2012) New permeation models for nanocomposite polymeric membranes filled with nonporous particles. Chem Eng Res Des 90:563–575

    Article  CAS  Google Scholar 

  47. Li T, Pan Y, Peinemann K-V, Lai Z (2013) Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Membr Sci 425:235–242

    Article  Google Scholar 

  48. Sforça ML, Yoshida IVP, Borges CP, Nunes SP (2001) Hybrid membranes based on SiO2/polyether-b-polyamide: morphology and applications. J Appl Polym Sci 82:178–185

    Article  Google Scholar 

  49. Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL (2010) Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with Multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538

    Article  CAS  Google Scholar 

  50. Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B (2014) Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). J Membr Sci 458:14–26

    Article  CAS  Google Scholar 

  51. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    Article  CAS  Google Scholar 

  52. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

  53. Surya Murali R, Ismail AF, Rahman MA, Sridhar S (2014) Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep Purif Technol 129:1–8

    Article  CAS  Google Scholar 

  54. Li WL, Tian SB, Zhu F (2013) Sulfonic acid functionalized nano-γ-Al2O3: a new, efficient, and reusable catalyst for synthesis of 3-substituted-2H-1,4-Benzothiazines. Sci World J 2013:1–6

  55. Pavia DL, Lampman GM, Kriz GS (1979) Introduction to spectroscopy: a guide for students of organic chemistry. Harcourt Brace College, California

  56. Le NL, Wang Y, Chung T-S (2011) Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. J Membr Sci 379:174–183

    Article  CAS  Google Scholar 

  57. Zhao D, Ren J, Li H, Li X, Deng M (2014) Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes. J Membr Sci 467:41–47

    Article  CAS  Google Scholar 

  58. Brunetti A, Scura F, Barbieri G, Drioli E, (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125

  59. Nafisi V, Hägg MB (2014) Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Membr Sci 459:244–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This is to confirm that this research was supported by Iranian National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toraj Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H.R., Azizi, N. & Mohammadi, T. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2O3 membrane for CO2/CH4 separation using response surface methodology. J Polym Res 24, 67 (2017). https://doi.org/10.1007/s10965-017-1228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1228-1

Keywords

Navigation