Skip to main content
Log in

Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The morphological, structural, dielectric and electrical properties of aqueous solution-cast prepared poly(ethylene oxide)–zinc oxide (PEO–ZnO) nanocomposite films have been investigated as a function of ZnO nanoparticle concentrations up to 5 wt%. Scanning electron microscopy (SEM) images of these films show that the morphology of pristine PEO aggregated spherulites changes into fluffy, voluminous and highly porous with dispersion of ZnO nanoparticles into the PEO matrix. X-ray diffraction (XRD) study confirms that the crystalline phase of PEO greatly reduces at 1 wt% ZnO, and it again increases gradually with further increase of ZnO concentration. The dielectric relaxation spectroscopy (DRS) over the frequency range 20 Hz–1 MHz reveals that the real part of complex dielectric permittivity at audio frequencies decreases non-linearly whereas it remains almost constant at radio frequencies for these polymeric nanocomposites. Dispersion of nanosize ZnO particles into the PEO matrix reduces the values of dielectric permittivity which also exhibits a correlation with the dispersivity of ZnO nanoparticles. The relaxation peaks observed in the dielectric loss tangent and electric modulus spectra reveal that the electrostatic interactions of nanoscale ZnO particles with the ethylene oxide functional dipolar group of PEO monomer units decrease the local chain segmental dynamics of the polymer. Real part of ac conductivity spectra of these films have been analyzed by power law fit over the audio and radio frequency regions, respectively, and the obtained dc conductivity values for these regions differ by more than two orders of magnitude. The temperature dependent relaxation time and dc conductivity values of the nanodielectric material obey the Arrhenius relation of activation energies and confirm a correlation between dc conductivity and PEO chain segmental motion which is exactly identical to the characteristics of solid polymer electrolytes. Results imply that these nanocomposite materials can serve as low permittivity flexible nanodielectric for radio frequency microelectronic devices and also as electrical insulator for audio frequency operating conventional devices in addition to their suitability in preparation of solid polymer electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Keith NJ (2010) Dielectric polymer nanocomposites. Springer Science+Business Media, LLC

    Google Scholar 

  2. Tan D, Irwin P (2011) Polymer based nanodielectric composites. In: Sikalidis C (ed) Advances in ceramics. INTECH, Croatia

    Google Scholar 

  3. Tuncer E, Rondinone AJ, Woodward J, Sauers I, James DR, Ellis AR (2009) Cobalt iron-oxide nanoparticles modified poly(methyl methacrylate) nanodielectric. Appl Phys A Mater Sci Process 94:843–852

    Article  CAS  Google Scholar 

  4. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365

    Article  CAS  Google Scholar 

  5. Qiao Y, Islam MS, Han K, Leonhardt E, Zhang J, Wang Q, Ploehn HJ, Tang C (2013) Polymers containing highly polarizable conjugated side chains as high-performance all-organic nanodielectric materials. Adv Funct Mater 23:5638–5646

    Article  CAS  Google Scholar 

  6. Luzio A, Ferré FG, Fonzo FD, Caironi M (2014) Hybrid nanodielectrics for low-voltage organic electronics. Adv Funct Mater 24:1790–1798

    Article  CAS  Google Scholar 

  7. Zhou Y, He J, Hu J, Dang B (2016) Surface-modified MgO nanoparticle enhances the mechanical and direct-current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics. J Appl Polym Sci 133:42863 (10 pp)

    Google Scholar 

  8. Mansour SA, Elsad RA, Izzularab MA (2016a) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Sci 23:85 (8 pp)

    Google Scholar 

  9. Lago N, Garcia-Calvo O, Lopez del Amo JM, Rojo T, Armand M (2015) All–solid–state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. ChemSusChem 8:3039–3043

    Article  CAS  Google Scholar 

  10. Tan DQ, Cao Y, Fang X, Irwin PC (2014) Tunable nanodielectric composites. Adv Mater Sci Eng 549275:6 pp

  11. Sengwa RJ, Choudhary S, Sankhla S (2010) Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Compos Sci Technol 70:1621–1627

    Article  CAS  Google Scholar 

  12. Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604

    Article  CAS  Google Scholar 

  13. Khutia M, Joshi GM (2015) Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias. J Mater Sci Mater Electron 26:5475–5488

    Article  CAS  Google Scholar 

  14. Choudhary S, Sengwa RJ (2016a) Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites. AIP Conf Proc 1728:020420 (6 pp)

    Article  Google Scholar 

  15. Sengwa RJ, Choudhary S (2016) Dielectric dispersion and relaxation in polymer blend based nanodielectric film. Macromol Symp 362:132–138

    Article  CAS  Google Scholar 

  16. Mansour SA, Elsad RA, Izzularab MA (2016b) Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol-gel route. J Sol-Gel Sci Technol 80:333–341

    Article  CAS  Google Scholar 

  17. Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R (2004) Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Funct Mater 14:943–956

    Article  CAS  Google Scholar 

  18. Yang Y, Qi JJ, Zhang Y, Liao QL, Tang LD, Qin Z (2008) Controllable fabrication and electromechanical characterization of single crystalline Sb-doped ZnO nanobelts. Appl Phys Lett 92:183117

    Article  Google Scholar 

  19. Zhang XM, Lu MY, Zhang Y, Chen LJ, Wang ZI (2009) Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater 21:2767–2770

    Article  CAS  Google Scholar 

  20. Lin WH, Yan XQ, Zhang XM, Qin Z, Zhang Z, Bai ZM, Lei Y, Zhang Y (2011) The comparison of ZnO nanowire detectors working under two wavelengths of ultraviolet. Solid State Commun 151:1860–1863

    Article  CAS  Google Scholar 

  21. Bai Z, Yan X, Chen X, Liu H, Shen Y, Zhang Y (2013) ZnO nanowire array ultraviolet photodetectors with self-powered properties. Curr Appl Phys 13:165–169

    Article  Google Scholar 

  22. Aga R, Mu R (2010) Doping of polymers with ZnO nanostructures for optoelectronic and sensor application in: N. Lupu (Ed.) Nanowires Science and Technology’. INTECH, Croatia, 205–222.

  23. Karthikeyan B, Pandiyarajan T, Mangalaraja RV (2016) Enhanced blue light emission in transparent ZnO:PVA nanocomposite free standing polymer films. Spectrochim Acta A 152:485–490

    Article  CAS  Google Scholar 

  24. Kinadjian N, Achard MF, López BJ, Maugey M, Poulin P, Prouzet E, Backov R (2012) ZnO/PVA macroscopic fibers bearing anisotropic photonic properties. Adv Funct Mater 22:3994–4003

    Article  CAS  Google Scholar 

  25. Han S, Huang W, Shi W, Yu J (2014) Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer. Sensors Actuators B Chem 203:9–16

    Article  CAS  Google Scholar 

  26. Nath SS, Choudhary M, Chakdar D, Gope G, Nath RK (2010) Acetone sensing property of ZnO quantum dots embedded on PVP. Sensors Actuators B Chem 148:353–357

    Article  CAS  Google Scholar 

  27. Morales-Acosta MD, Quevedo-López MA, Ramírez-Bon R (2014) PMMA–SiO2 hybrid films as gate dielectric for ZnO based thin-film transistors. Mater Chem Phys 146:380–388

    Article  CAS  Google Scholar 

  28. Bidadi H, Olad A, Parhizkar M, Aref SM, Ghafouri M (2013) Nonlinear properties of ZnO-polymer composites prepared by solution-casting method. Vacuum 87:50–54

    Article  CAS  Google Scholar 

  29. Kulyk B, Kapustianyk V, Tsybulskyy V, Krupka O, Sahraoui B (2010) Optical properties of ZnO/PMMA nanocomposite films. J Alloys Compd 502:24–27

    Article  CAS  Google Scholar 

  30. Soumya S, Mohamed AP, Paul L, Mohan K, Ananthakumar S (2014) Near IR reflectance characteristics of PMMA/ZnO nanocomposites for solar thermal control interface films. Sol Energy Mater Sol Cells 125:102–112

    Article  CAS  Google Scholar 

  31. Lee D, Cho K, Choi J, Kim S (2015) Effect of mesoscale grains on thermoelectric characteristics of aligned ZnO/PVP composite nanofibers. Mater Lett 142:250–252

    Article  CAS  Google Scholar 

  32. Chakraborty H, Sinha A, Mukherjee N, Ray D, Chattopadhyay PP (2013) A study on nanoindentation and tribological behaviour of multifunctional ZnO/PMMA nanocomposite. Mater Lett 93:137–140

    Article  CAS  Google Scholar 

  33. Roy SS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos B 47:314–319

    Article  CAS  Google Scholar 

  34. Hmar JJL, Majumder T, Roy JN, Mondal SP (2015) Flexible, transparent, high dielectric and photoconductive thin films using ZnO nanosheets-multi-walled carbon nanotube-polymer nanocomposites. J Alloys Compd 651:82–90

    Article  CAS  Google Scholar 

  35. Wang M, Lian Y, Wang X (2009) PPV/PVA/ZnO nanocomposite prepared by complex precursor method and its photovoltaic application. Curr Appl Phys 9:189–194

    Article  Google Scholar 

  36. Im YM, Oh TH, Nathanael JA, Jang SS (2015) Effect of ZnO nanoparticles morphology on UV blocking of poly(vinyl alcohol)/ZnO composite nanofibers. Mater Lett 147:20–24

    Article  CAS  Google Scholar 

  37. Gaur MS, Indolia AP (2011) Thermally stimulated dielectric properties of polyvinylidenefluoride-zinc oxide nanocomposites. J Therm Anal Calorim 103:977–985

    Article  CAS  Google Scholar 

  38. Indolia AP, Gaur MS (2013) Optical properties of solution grown PVDF-ZnO nanocomposite thin films. J Polym Res 20:43 (8pp)

    Article  Google Scholar 

  39. Bafqi MSS, Bagherzadeh R, Latifi M (2015) Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22:130 (9pp)

    Article  Google Scholar 

  40. Xiong HM, Zhao X, Chen JS (2001) New polymer−inorganic nanocomposites: PEO−ZnO and PEO−ZnO−LiClO4 films. J Phys Chem B 105:10169–10174

    Article  CAS  Google Scholar 

  41. Fan L, Dang Z, Wei G, Nan CW, Li M (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes. Mater Sci Eng B 99:340–343

    Article  Google Scholar 

  42. Bhattacharya S, Ghosh A (2008) Effect of ZnO nanoparticles on the structure and ionic relaxation of poly(ethylene oxide)–LiI polymer electrolyte nanocomposites. J Nanosci Nanotechnol 8:1922–1926

    Article  CAS  Google Scholar 

  43. ElBellihi AA, Bayoumy WA, Masoud EM, Mousa MA (2012) Preparation, characterizations and conductivity of composite polymer electrolytes based on PEO-LiClO4 and nano ZnO filler. Bull Kor Chem Soc 33:2949–2954

    Article  CAS  Google Scholar 

  44. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2011) Effect of ZnO nanoparticles filler concentration on the properties of PEO-ENR50-LiCF3SO3 solid polymeric electrolyte. Ionics 17:451–456

    Article  CAS  Google Scholar 

  45. Lee J, Bhattacharyya D, Easteal AJ, Metson JB (2008) Properties of nano-ZnO/poly(vinyl alcohol)/poly(ethylene oxide) composite thin films. Curr Appl Phys 8:42–47

    Article  Google Scholar 

  46. Sui X, Shao C, Liu Y (2007) Photoluminescence of polyethylene oxide–ZnO composite electrospun fibers. Polymer 48:1459–1463

    Article  CAS  Google Scholar 

  47. Elimat ZM (2014) Optical characterization of poly (ethylene oxide)/zinc oxide thin films. Radiat Eff Defects Solids 169:686–695

    Article  CAS  Google Scholar 

  48. Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO-PVA nanocomposites. Phys Status Solidi A 205:2033–2037

    Article  CAS  Google Scholar 

  49. Sengwa RJ, Choudhary S (2014) Structural characterization of hydrophilic polymer blends/ montmorillonite clay nanocomposites. J Appl Polym Sci 131:40617 (11 pp)

    Article  Google Scholar 

  50. Rao JK, Raizada A, Ganguly D, Mankad MM, Satayanarayana SV, Madhu GM (2015) Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films. J Mater Sci 50:7064–7074

    Article  CAS  Google Scholar 

  51. Pandey M, Joshi GM, Mukherjee A, Thomas P (2016) Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites. Polym Int 65:1098–1106

    Article  CAS  Google Scholar 

  52. Rashmi SH, Raizada A, Madhu GM, Kittur AA, Suresh R, Sudhina HK (2015) Influence of zinc oxide nanoparticles on structural and electrical properties of polyvinyl alcohol films. Plast Rubber Compos 44:33–39

    Article  CAS  Google Scholar 

  53. Choudhary S, Sengwa RJ (2016b) Anomalous behaviour of the dielectric and electrical properties of polymeric nanodielectric poly(vinyl alcohol)–titanium dioxide films. J Appl Polym Sci 133:44568 (11pp)

    Google Scholar 

  54. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659

    Article  CAS  Google Scholar 

  55. Gaur MS, Indolia AP, Rogachev AA, Rahachou AV (2015) Influence of SiO2 nanoparticles on morphological, thermal and dielectric properties of PVDF. J Therm Anal Calorim 122:1403–1416

    Article  CAS  Google Scholar 

  56. Lanje AS, Sharma SJ, Ningthoujam RS, Ahn JS, Pode RB (2013) Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv Powder Technol 24:331–335

    Article  CAS  Google Scholar 

  57. Smith RC, Liang C, Landry M, Nelson JK, Schadler LS (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielectr Insul 15:187–196

    Article  CAS  Google Scholar 

  58. Jin X, Zhang S, Runt J (2002) Observation of a fast dielectric relaxation in semi-crystalline poly(ethylene oxide). Polymer 43:6247–6254

    Article  CAS  Google Scholar 

  59. Singh PK, Gaur MS, Chauhan RS (2015) Dielectric properties of sol-gel synthesized polysulfone-ZnO nanocomposites. J Therm Anal Calorim 122:725–740

    Article  CAS  Google Scholar 

  60. Choudhary S, Sengwa RJ (2012) Dielectric properties and structures of melt-compounded poly(ethylene oxide)–montmorillonite nanocomposites. J Appl Polym Sci 124:4847–4853

    CAS  Google Scholar 

  61. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Relaxation phenomena in rubber/layered silicate nanocomposites. Express Polym Lett 1:837–845

    Article  CAS  Google Scholar 

  62. El-Houssiny AS, Ward AAM, Mansour SH, Abd-El-Messieh SL (2012) Biodegradable blends based on polyvinyl pyrrolidone for insulation purposes. J Appl Polym Sci 124:3879–3891

    Article  CAS  Google Scholar 

  63. Zhang S, Dou S, Colby RH, Runt J (2005) Glass transition and ionic conduction in plasticized and doped ionomers. J Non-Cryst Solids 351:2825–2830

    Article  CAS  Google Scholar 

  64. Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142:172–181

    Article  CAS  Google Scholar 

  65. Choudhary S, Bald A, Sengwa RJ, Chęcińska-Majak D, Klimaszewski K (2015) Effects of ultrasonic assisted processing and clay nanofiller on dielectric properties and lithium ion transport mechanism of poly(methyl methacrylate) based plasticized polymer electrolytes. J Appl Polym Sci 132:42188 (11pp)

    Google Scholar 

  66. Mishra R, Rao KJ (1998) Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends. Solid State Ionics 106:113–127

    Article  CAS  Google Scholar 

  67. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370

    Article  CAS  Google Scholar 

  68. Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr Appl Phys 15:135–143

    Article  Google Scholar 

  69. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgement

Authors are grateful to the Department of Science and Technology (DST), New Delhi for providing the experimental facilities through research projects Nos. SR/S2/CMP-09/2002, SR/S2/CMP-0072/2010 and the DST–FIST program, and the UGC, New Delhi, for the SAP-DRS(II) grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shobhna Choudhary or R. J. Sengwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Sengwa, R.J. Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res 24, 54 (2017). https://doi.org/10.1007/s10965-017-1218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1218-3

Keywords

Navigation