Skip to main content
Log in

Nanosized dispersions based on chitosan and NaPSS

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Interpolyelectrolyte complexes (IPECs) were obtained by the solution mixing method from chitosan and poly(sodium 4-styrenesulfonate), NaPSS. XRD, FTIR spectroscopy, and thermogravimetric analysis indicated that IPEC formation inhibits the occurrence of crystalline regions in the resultant solid IPECs. Turbidimetry, viscometry, conductometry, and zeta potential measurements showed that at a sulfonate to aminium molar ratio = 1, the process of IPEC production is optimum. Average hydrodynamic diameters, calculated from DLS measurements, showed that IPEC formation occurs in two stages: first there is a decrease in macromolecular dimensions, as sulfonate to aminium molar ratio is increased. At a characteristic sulfonate to aminium molar ratio, soluble IPEC structures collapse to form phase segregated clusters that begin to nucleate the formation of larger, insoluble, IPEC particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Michaels AS (1965) Polyelectrolyte complexes. Ind Eng Chem 57:32. doi:10.1021/Ie50670a007

    Article  CAS  Google Scholar 

  2. Delair T (2011) Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 78:10–18. doi:10.1016/j.ejpb.2010.12.001

    Article  CAS  Google Scholar 

  3. Lingstrom R, Wagberg L, Odberg L, et al (2009) A comparison of polyelectrolyte complexes and multilayers: their adsorption behaviour and use for enhancing tensile strength of paper. Nord Pulp Pap Res J 24:246

    Google Scholar 

  4. Müller M (2014) Polyelectrolyte complexes in the dispersed and solid state II. Application aspects. Springer-Verlag, Heidelberg

    Google Scholar 

  5. Petzold G, Nebel A, Buchhammer HM, Lunkwitz K (1998) Preparation and characterization of different polyelectrolyte complexes and their application as flocculants. Colloid Polym Sci 276:125–130. doi:10.1007/s003960050219

    Article  CAS  Google Scholar 

  6. Wen YH, Grondahl L, Gallego MR, et al (2012) Delivery of dermatan sulfate from polyelectrolyte complex-containing alginate composite microspheres for tissue regeneration. Biomacromolecules 13:905–917. doi:10.1021/bm201821x

    Article  CAS  Google Scholar 

  7. Zhao X, Liu P, Song Q, et al (2015) Surface charge-reversible polyelectrolyte complex nanoparticles for hepatoma-targeting delivery of doxorubicin. J Mater Chem B 3:6185–6193. doi:10.1039/c5tb00600g

    Article  CAS  Google Scholar 

  8. Nakajima A, Shinoda K (1976) Complex-formation between oppositely charged polysaccharides. J Colloid Interf Sci 55:126–132. doi:10.1016/0021-9797(76)90017-5

    Article  CAS  Google Scholar 

  9. Ren Y, Xie H, Liu X, et al (2016) Tuning the formation and stability of microcapsules by environmental conditions and chitosan structure. Int J Biol Macromol 91:1090–1100. doi:10.1016/j.ijbiomac.2016.06.034

    Article  CAS  Google Scholar 

  10. Schatz C, Lucas JM, Viton C, et al (2004a) Formation and properties of positively charged colloids based on polyelectrolyte complexes of biopolymers. Langmuir 20:7766–7778. doi:10.1021/La049460m

    Article  CAS  Google Scholar 

  11. Tavares IS, Caroni A, Neto AAD, et al (2012) Surface charging and dimensions of chitosan coacervated nanoparticles. Colloid Surface B 90:254–258. doi:10.1016/j.colsurfb.2011.10.025

    Article  CAS  Google Scholar 

  12. Pergushov DV, Zezin AA, Zezin AB, Müller AHE (2014) Advanced functional structures based on interpolyelectrolyte complexes. In: Müller M (ed) Polyelectrolyte complexes dispersed solid state I. Princ. Theory. Springer-Verlag, Heidelberg, pp. 173–225

    Google Scholar 

  13. Dautzenberg H (1997) Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl. Macromolecules 30:7810–7815. doi:10.1021/Ma970803f

    Article  CAS  Google Scholar 

  14. Schatz C, Domard A, Viton C, et al (2004b) Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules 5:1882–1892. doi:10.1021/bm049786

    Article  CAS  Google Scholar 

  15. Berth G, Dautzenberg H (2002) The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution. Carbohydr Polym 47:39–51

    Article  CAS  Google Scholar 

  16. de Vasconcelos CL, Bezerril PM, dos Santos DES, et al (2006) Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules 7:1245–1252. doi:10.1021/Bm050963w

    Article  Google Scholar 

  17. Calija B, Savic S, Krajisnik D, et al (2015) pH-sensitive polyelectrolyte films derived from submicron chitosan/Eudragit((R)) L 100-55 complexes: physicochemical characterization and in vitro drug release. J Appl Polym Sci. doi:10.1002/app.42583

    Google Scholar 

  18. Zhao Q, An QFF, Ji YL, et al (2011) Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J Memb Sci 379:19–45. doi:10.1016/j.memsci.2011.06.016

    Article  CAS  Google Scholar 

  19. de Morais WA, Silva GTM, Nunes JS, et al (2016) Interpolyelectrolyte complex formation: from lyophilic to lyophobic colloids. Colloid Surface A 498:112–120. doi:10.1016/j.colsurfa.2016.03.052

    Article  Google Scholar 

  20. Coimbra P, Ferreira P, Alves P, Gil MH (2013) Polysaccharide-based polyelectrolyte complexes and polyelectrolyte multilayers for biomedical applications Carbohydrates Appl Med

  21. Philipp B, Dautzenberg H, Linow K-J, et al (1989) Polyelectrolyte complexes—recent developments and open problems. Prog Polym Sci 14:91–172. doi:10.1016/0079-6700(89)90018-X

    Article  CAS  Google Scholar 

  22. Dautzenberg H (2000) Light scattering studies on polyelectrolyte complexes. Macromol Symp 162:1–21. doi:10.1002/1521-3900(200012)162:1<1::Aid-Masy1>3.0.Co;2-0

    Article  CAS  Google Scholar 

  23. Webster L, Huglin MB, Robb ID (1997) Complex formation between polyelectrolytes in dilute aqueous solution. Polymer (Guildf) 38:1373–1380. doi:10.1016/S0032-3861(96)00650-7

    Article  CAS  Google Scholar 

  24. Mezina EA, Lipatova IM (2015) Effect of peroxide depolymerization of chitosan on properties of chitosan sulfate particles produced from this substance. Russ J Appl Chem 88:1576–1581. doi:10.1134/S1070427215100031

    Article  CAS  Google Scholar 

  25. Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41:5–11. doi:10.1007/s10438-005-0002-z

    Article  Google Scholar 

  26. Luo YC, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367. doi:10.1016/j.ijbiomac.2013.12.017

    Article  CAS  Google Scholar 

  27. Kumar MNVR (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3:234–258

    Google Scholar 

  28. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014. doi:10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  29. Wang JJ, Zeng ZW, Xiao RZ, et al (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 6:765–774. doi:10.2147/Ijn.S17296

    CAS  Google Scholar 

  30. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  31. Siyawamwaya M, Choonara YE, Bijukumar D, et al (2015) A review: overview of novel polyelectrolyte complexes as prospective drug bioavailability enhancers. Int J Polym Mater Polym Biomater 64:955–968. doi:10.1080/00914037.2015.1038816

    Article  CAS  Google Scholar 

  32. Ivinova ON, Izumrudov VA, Muronetz VI, et al (2003) Influence of complexing polyanions on the thermostability of basic proteins. Macromol Biosci 3:210–215. doi:10.1002/mabi.200390024

    Article  CAS  Google Scholar 

  33. Izumrudov VA, Volkova IF, Gorshkova MY (2010) Chitosan-based polyelectrolyte complexes soluble in enzyme-friendly pH range. Macromol Chem Phys 211:453–460. doi:10.1002/macp.200900369

    Article  CAS  Google Scholar 

  34. Mendoza-Dorantes T, Pal U, Vega-Acosta JR, Marquez-Beltran C (2013) Encapsulation and surface charge manipulation of organic and inorganic colloidal substrates by multilayered polyelectrolyte films. Colloid Surface A 434:253–259. doi:10.1016/j.colsurfa.2013.05.027

    Article  CAS  Google Scholar 

  35. Caroni ALPF, de Lima CRM, Pereira MR, Fonseca JLC (2009) The kinetics of adsorption of tetracycline on chitosan particles. J Colloid Interf Sci 340:182–191. doi:10.1016/j.jcis.2009.08.016

    Article  CAS  Google Scholar 

  36. dos Santos ZM, Caroni ALPF, Pereira MR, et al (2009) Determination of deacetylation degree of chitosan: a comparison between conductometric titration and CHN elemental analysis. Carbohydr Res 344:2591–2595. doi:10.1016/j.carres.2009.08.030

    Article  CAS  Google Scholar 

  37. Bezerril LM, de Vasconcelos CL, Dantas TNC, et al (2006) Rheology of chitosan-kaolin dispersions. Colloid Surface A 287:24–28. doi:10.1016/j.colsurfa.2006.03.017

    Article  CAS  Google Scholar 

  38. Rinaudo M, Milas M, Ledung P (1993) Characterization of chitosan—influence of ionic-strength and degree of acetylation on chain expansion. Int J Biol Macromol 15:281–285

    Article  CAS  Google Scholar 

  39. Stopilha RT, de Lima CRM, Pereira MR, Fonseca JLC (2016) Preparation of PEC’s based on chitosan and NaPMA. Colloid Surface A 489:27–35. doi:10.1016/j.colsurfa.2015.08.040

    Article  CAS  Google Scholar 

  40. de Vasconcelos CL, Pereira MR, Fonseca JLC (2005) Polyelectrolytes in solution and the stabilization of colloids. J Dispers Sci Technol 26:59–70

    Article  Google Scholar 

  41. Han J, Zhou ZY, Yin RX, et al (2010) Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol 46:199–205. doi:10.1016/j.ijbiomac.2009.11.004

    Article  CAS  Google Scholar 

  42. Zhang NC, Yu X, Hu JQ, et al (2013) Synthesis of silver nanoparticle-coated poly(styrene-co-sulfonic acid) hybrid materials and their application in surface-enhanced Raman scattering (SERS) tags. RSC Adv 3:13740–13747. doi:10.1039/c3ra40888d

    Article  CAS  Google Scholar 

  43. Yang Y, Chu Y, Zhang YP, et al (2006) Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates. J Solid State Chem 179:470–475. doi:10.1016/j.jssc.2005.10.011

    Article  CAS  Google Scholar 

  44. de Vasconcelos CL, Bezerril PM, Dantas TNC, et al (2007) Adsorption of bovine serum albumin on template-polymerized chitosan/poly(methacrylic acid) complexes. Langmuir 23:7687–7694. doi:10.1021/la700537t

    Article  Google Scholar 

  45. Castro C, Gargallo L, Radic D, et al (2011) Blends containing chitosan and poly(sodium-4-styrene sulphonate). Compatibility behavior. Carbohydr Polym 83:81–87. doi:10.1016/j.carbpol.2010.07.027

    Article  CAS  Google Scholar 

  46. Zundel G (1969) Hydration structure and intermolecular interaction in polyelectrolytes. Angew Chemie Int Ed English 8:499–509. doi:10.1002/anie.196904991

    Article  CAS  Google Scholar 

  47. Peniche C, Arguelles-Monal W, Davidenko N, et al (1999) Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation. Biomaterials 20:1869–1878

    Article  CAS  Google Scholar 

  48. Hu Y, Jiang XQ, Ding Y, et al (2002) Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials 23:3193–3201

    Article  CAS  Google Scholar 

  49. Maciel JS, Silva DA, Paula HCB, de Paula RCM (2005) Chitosan/carboxymethyl cashew gum polyelectrolyte complex: synthesis and thermal stability. Eur Polym J 41:2726–2733. doi:10.1016/j.eurpolymj.2005.05.009

    Article  CAS  Google Scholar 

  50. Neto CGT, Giacometti JA, Job AE, et al (2005a) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103. doi:10.1016/j.carbpol.2005.02.022

    Article  CAS  Google Scholar 

  51. Jiang DD, Yao Q, McKinney MA, Wilkie CA (1999) TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym Degrad Stab 63:423–434. doi:10.1016/s0141-3910(98)00123-2

    Article  CAS  Google Scholar 

  52. Oikonomou EK, Pefkianakis EK, Bokias G, Kallitsis JK (2008) Direct synthesis of amphiphilic block copolymers, consisting of poly(methyl methacrylate) and poly(sodium styrene sulfonate) blocks through atom transfer radical polymerization. Eur Polym J 44:1857–1864. doi:10.1016/j.eurpolymj.2008.03.005

    Article  CAS  Google Scholar 

  53. Yao Q, Wilkie CA (1999) Thermal degradation of blends of polystyrene and poly(sodium 4-styrenesulfonate) and the copolymer, poly(styrene-co-sodium 4-styrenesulfonate). Polym Degrad Stab 66:379–384. doi:10.1016/S0141-3910(99)00090-7

    Article  CAS  Google Scholar 

  54. Guthrie JP (1978) Hydrolysis of esters of oxy acids - pKa values for strong acids - Bronsted relationship for attack of water at methyl - free-energies of hydrolysis of esters of oxy acids - and a linear relationship between free-energy of hydrolysis and pKa holding over a. Can J Chem Can Chim 56:2342–2354. doi:10.1139/V78-385

    Article  CAS  Google Scholar 

  55. Lavertu M, Darras V, Buschmann MD (2012) Kinetics and efficiency of chitosan reacetylation. Carbohydr Polym 87:1192–1198. doi:10.1016/j.carbpol.2011.08.096

    Article  CAS  Google Scholar 

  56. Mao J, Kondu S, Ji H-F, McShane MJ (2006) Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection. Biotechnol Bioeng 95:333–341. doi:10.1002/bit.20755

    Article  CAS  Google Scholar 

  57. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  58. Fernandes ALP, Morais WA, Santos AIB, et al (2005) The influence of oxidative degradation on the preparation of chitosan nanoparticles. Colloid Polym Sci 284:1–9

    Article  CAS  Google Scholar 

  59. Neto CGD, Fernandes ALP, Santos AIB, et al (2005b) Preparation and characterization of chitosan-based dispersions. Polym Int 54:659–666. doi:10.1002/pi.1738

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Brazil’s Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Science without Borders Program, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), PRHPB-222, and Pró-Reitoria de Pesquisa da Universidade Federal do Rio Grande do Norte (PROPESQ-UFRN) for financial support during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. C. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, C.R.M., Pereira, M.R. & Fonseca, J.L.C. Nanosized dispersions based on chitosan and NaPSS. J Polym Res 24, 51 (2017). https://doi.org/10.1007/s10965-017-1214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1214-7

Keywords

Navigation