Skip to main content
Log in

Rheological study of crystallization behavior of polylactide and its flax fiber composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, the isothermal crystallization of compounded polylactide (PLA) and PLA-flax fiber composites was investigated by means of rheometry using small amplitude oscillatory shear (SAOS). The rheological measurements were carried out in parallel plate flow geometry at a crystallization temperature (T c ) ranging from 110 to 140 °C. In addition, the effect of shear on polylactide crystallization was studied at 140 °C. Rheological behavior in the molten state was employed to predict the initial viscosity in the T c interval by applying time-temperature superposition, and results were found to be in agreement with experimental values at low crystallization rates. A simple empirical model was also used to determine the crystallization induction time in a wide range of supercooling conditions. The evolution of the complex viscosity under quiescent conditions of the PLA-based flax-fiber composite indicated an enhancement of the rate of crystallization due to the presence of cellulosic fibers, while shear flow effectively accelerated the crystallization of neat PLA. This work shows that rheometry is an accurate technique for analyzing the crystallization behavior of polymers in a temperature range which presents low to very low crystallization rates, which is the case for PLA at T ≥ 130 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Carus, M., Ravenstijn, J., Baltus, W., Carrez, D., Kaeb, H., Zepnik, S., Nova-Institut GmbH: 2013.

    Google Scholar 

  2. Garlotta D (2001) J Polym Environ 9:63

    Article  CAS  Google Scholar 

  3. Gupta AP, Kumar V (2007) Eur Polym J 43:4053

    Article  CAS  Google Scholar 

  4. Kolstad JJ (1996) J Appl Polym Sci 62:1079

    Article  CAS  Google Scholar 

  5. Tsuji H, Takai H, Fukada N, Takikawa H (2006) Macromol Mater Eng 291:325

    Article  CAS  Google Scholar 

  6. Arias A, Heuzey MC, Huneault MA (2013) Cellulose 20:439

    Article  CAS  Google Scholar 

  7. Mathew AP, Oksman K, Sain M (2006) J Appl Polym Sci 101:300

    Article  CAS  Google Scholar 

  8. Le Duigou A, Davies P, Baley C (2010) Compos Sci Technol 70:1612

    Article  CAS  Google Scholar 

  9. Khanna YP (1993) Macromolecules 26:3639

    Article  CAS  Google Scholar 

  10. Teh JW, Blom HP, Rudin A (1994) Polymer 35:1680

    Article  Google Scholar 

  11. Boutahar K, Carrot C, Guillet J (1998) Macromolecules 31:1921

    Article  CAS  Google Scholar 

  12. Kelarakis A, Mai SM, Booth C, Ryan AJ (2005) Polymer 46:2739

    Article  CAS  Google Scholar 

  13. Carrot C, Guillet J, Boutahar K (1993) Rheol Acta 32:566

    Article  CAS  Google Scholar 

  14. Acierno S, Maio ED, Iannace S, Grizzuti N (2006) Rheol Acta 45:387

    Article  CAS  Google Scholar 

  15. Acierno S, Pasquino R, Grizzuti N (2009) J Therm Anal Calorim 98:639

    Article  CAS  Google Scholar 

  16. Chen L, Ma C-G, Wang H-Y, Zhang J-X, Xiong X-M (2015) J Appl Polym Sci 132:41685

    Google Scholar 

  17. Coppola S, Acierno S, Grizzuti N, Vlassopoulos D (2006) Macromolecules 39:1507

    Article  CAS  Google Scholar 

  18. Coppola S, Balzano L, Gioffredi E, Maffettone PL, Grizzuti N (2004) Polymer 45:3249

    Article  CAS  Google Scholar 

  19. Godara A, Raabe D, Van Puyvelde P, Moldenaers P (2006) Polym Test 25:460

    Article  CAS  Google Scholar 

  20. Yu FY, Zhang HB, Liao RG, Zheng H, Yu W, Zhou CX (2009) Eur Polym J 45:2110

    Article  CAS  Google Scholar 

  21. Hadinata C, Gabriel C, Ruellman M, Laun HM (2005) J Rheol 49:327

    Article  CAS  Google Scholar 

  22. Yuryev Y, Wood-Adams P (2010) Journal of Polymer Science Part B-Polymer Physics 48:812

    Article  CAS  Google Scholar 

  23. Najafi N, Heuzey M-C, Carreau P, Therriault D (2015) Rheol Acta 54:831

    Article  CAS  Google Scholar 

  24. Kumaraswamy G (2005) Journal of Macromolecular Science-Polymer Reviews C45:375

    Article  CAS  Google Scholar 

  25. Janeschitz-Kriegl H, Ratajski E (2010) Colloid Polym Sci 288:1525

    Article  CAS  Google Scholar 

  26. Lamberti G (2014) Chem Soc Rev 43:2240

    Article  CAS  Google Scholar 

  27. Naiki M, Fukui Y, Matsumura T, Nomura T, Matsuda M (2001) J Appl Polym Sci 9:1693

    Article  Google Scholar 

  28. Langouche F (2006) Macromolecules 39:2568

    Article  CAS  Google Scholar 

  29. Somani RH, Yang L, Zhu L, Hsiao BS (2005) Polymer 46:8587

    Article  CAS  Google Scholar 

  30. van Meerveld J, Peters GWM, Hutter M (2004) Rheol Acta 44:119

    Article  CAS  Google Scholar 

  31. Zhong Y, Fang HG, Zhang YQ, Wang ZK, Yang JJ, Wang ZG (2013) ACS Sustain Chem Eng 1:663

    Article  CAS  Google Scholar 

  32. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  33. Ray SS, Okamoto M (2003) Macromol Mater Eng 288:936

    Article  CAS  Google Scholar 

  34. Wang YB, Yang L, Niu YH, Wang ZG, Zhang J, Yu FY, Zhang HB (2011) J Appl Polym Sci 122:1857

    Article  CAS  Google Scholar 

  35. Ramkumar DHS, Bhattacharya M (1998) Polym Eng Sci 38:1426

    Article  CAS  Google Scholar 

  36. Gu SY, Zhang K, Ren J, Zhan H (2008) Carbohydr Polym 74:79

    Article  CAS  Google Scholar 

  37. Sun TC, Chen FH, Dong X, Zhou Y, Wang DJ, Han CC (2009) Polymer 50:2465

    Article  CAS  Google Scholar 

  38. Li XJ, Zhong GJ, Li ZM (2010) Chin J Polym Sci 28:357

    Article  CAS  Google Scholar 

  39. Li XJ, Li ZM, Zhong GJ, Li LB (2008) Journal of Macromolecular Science Part B-Physics 47:511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from NSERC (Natural Sciences and Engineering Research Council of Canada) and FRQNT (Fonds québécois de la recherche sur la nature et les technologies) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Heuzey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias, A., Sojoudiasli, H., Heuzey, MC. et al. Rheological study of crystallization behavior of polylactide and its flax fiber composites. J Polym Res 24, 46 (2017). https://doi.org/10.1007/s10965-017-1210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1210-y

Keywords

Navigation