Skip to main content
Log in

Reversible addition fragmentation chain transfer polymerization of styrene from the edge of graphene oxide nanolayers

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A graphene oxide modifier containing chain transfer agent moieties (CR) was synthesized by an esterification reaction between 1,4-butanediol and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid. CR moieties were grafted at the edge of GO in low and high graft densities to yield GCRL and GCRH respectively. Then, GCRL and GCRH were used in grafting from reversible addition fragmentation chain transfer polymerization of styrene. Grafting of CR moieties was approved by Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy, and Raman spectroscopy. Expansion of graphene oxide interlayer by oxidation and functionalization processes was evaluated by X-ray diffraction. Conversion values of styrene monomer were obtained from gas chromatography. Molecular weight and PDI values of attached polystyrene chains were studied by size exclusion chromatography. Thermogravimetric analysis was also used to investigate the degradation temperatures, char contents, and graft contents. The attached modifier content in GCRH and GCRL is estimated to be 7.6 and 4.0% respectively. Scanning electron and transmission electron microscopies show that flat and smooth layers of graphite are wrinkled during the oxidation and then turned to opaque layers as a consequence of polymer grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) Polym Rev 52:142

    Article  CAS  Google Scholar 

  2. Lowe AB, McCormick CL (2007) Prog Polym Sci 32:283

    Article  CAS  Google Scholar 

  3. Hojjati B, Charpentier PA (2008) J Polym Sci: Part A: Polym Chem 46:3926

    Article  CAS  Google Scholar 

  4. Samakande A, Juodaityte JJ, Sanderson RD, Hartmann PC (2008) Macromol Mater Eng 293:428

    Article  CAS  Google Scholar 

  5. Roghani-Mamaqani H, Khezri K (2016) J Polym Res 23:190

    Article  Google Scholar 

  6. Kariminejad B, Salami-Kalajahi M, Roghani-Mamaqani H (2015) RSC Adv 5:100369

    Article  CAS  Google Scholar 

  7. Jafarzadeh S, Haddadi-Asl V, Roghani-Mamaqani H (2015) J Polym Res 22:1

    Article  CAS  Google Scholar 

  8. Tang Y, Xu S, Xie Y, Gu J, Song Z, Gao F, Kong J (2016) Compos Sci Technol 124:10

    Article  CAS  Google Scholar 

  9. Nguyen DH, Vana P (2006) Polym Adv Technol 17:625

    Article  CAS  Google Scholar 

  10. Stenzel MH, Zhang L, Huck WTS (2006) Macromol Rapid Commun 27:1121

    Article  CAS  Google Scholar 

  11. Peng Q, Lai DMY, Kang ET, Neoh KG (2006) Macromolecules 39:5577

    Article  CAS  Google Scholar 

  12. Zhao W, Tang Y, Xi J, Kong J (2015) Appl Surf Sci 326:276

    Article  CAS  Google Scholar 

  13. Salem N, Shipp DA (2005) Polymer 46:8573

    Article  CAS  Google Scholar 

  14. Salami-Kalajahi M, Haddadi-Asl V, Rahimi-Razin S, Behboodi-Sadabad F, Najafi M, Roghani-Mamaqan H (2012) J Polym Res 19:9793

    Article  Google Scholar 

  15. Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqan H (2012) J Polym Eng 32:13

    Article  CAS  Google Scholar 

  16. Semsarilar M, Perrier S (2010) Nat Chem 2:811

    Article  CAS  Google Scholar 

  17. Ngo VG, Bressy C, Leroux C, Margaillan A (2009) Polymer 50:3095

    Article  CAS  Google Scholar 

  18. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Polymer 51:1191

    Article  CAS  Google Scholar 

  19. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) J Mater Chem 19:7098

    Article  CAS  Google Scholar 

  20. Roghani-Mamaqani H, Haddadi-Asl V, Mortezaei M, Khezri K (2014) J Appl Polym Sci 131:40273

    Article  Google Scholar 

  21. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) RSC Adv 4:24439

    Article  CAS  Google Scholar 

  22. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Polym Int 63:1912

    Article  CAS  Google Scholar 

  23. Roghani-Mamaqani H (2015) RSC Adv 5:53357

    Article  CAS  Google Scholar 

  24. Roghani-Mamaqani H, Haddadi-Asl V (2014) Polym Compos 35:386

    Article  CAS  Google Scholar 

  25. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) J Polym Res 21:333

    Article  Google Scholar 

  26. Roghani-Mamaqani H, Khezri K (2016) Appl Surf Sci 360:373

    Article  CAS  Google Scholar 

  27. Yeole N, Kutcherlapati SNR, Jana T (2015) J Colloid Interface Sci 443:137

    Article  CAS  Google Scholar 

  28. Etmimi HM, Tonge MP, Sanderson RD (2011) J Polym Sci Part A: Polym Chem 49:1621

    Article  CAS  Google Scholar 

  29. Gu R, Xu WZ, Charpentier PA (2014) Polymer 55:5322

    Article  CAS  Google Scholar 

  30. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806

    Article  CAS  Google Scholar 

  31. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) RSC Adv 4:31428

    Article  CAS  Google Scholar 

  32. Lai JT, Filla D, Shea R (2002) Macromolecules 35:6754

    Article  CAS  Google Scholar 

  33. Bach LG, Rafiqul Islam M, Binh MT, Kim DH, Lim KT (2013) Intern J Precis Eng Manuf 14:937

    Article  Google Scholar 

  34. Mirshafiei-Langari SA, Roghani-Mamaqani H, Sobani M, Khezri K (2013) J Polym Res 20:163

    Article  Google Scholar 

  35. Wu H, Zhao W, Hu H, Chen G (2011) J Mater Chem 21:8626

    Article  CAS  Google Scholar 

  36. Roghani‐Mamaqani H, Haddadi‐Asl V, Najafi M, Salami‐Kalajahi M (2012) J Appl Polym Sci 123:409

    Article  Google Scholar 

  37. Roghani‐Mamaqani H, Haddadi‐Asl V, Najafi M, Salami‐Kalajahi M (2012) Polym Sci Ser B 54:153

    Article  Google Scholar 

  38. Rafiqul Islam M, Bach LG, Lim KT (2013) Appl Surf Sci 276:298

    Article  Google Scholar 

  39. Hong CY, Li X, Pan CY (2007) Eur Polym J 43:4114

    Article  CAS  Google Scholar 

  40. Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z (2014) Colloid Polym Sci 292:2971

    Article  CAS  Google Scholar 

  41. Roghani-Mamaqani H, Haddadi-Asl V, Sobhkhiz Z, Ghaderi-Ghahfarrokhi M (2015) Colloid Polym Sci 293:735

    Article  CAS  Google Scholar 

  42. Najafi-Shoa S, Roghani-Mamaqani H, Salami-Kalajahi M (2016) J Sol-Gel Sci Technol 80:362

    Article  CAS  Google Scholar 

  43. Noparvar-Qarebagh A, Roghani-Mamaqani H, Salami-Kalajahi M (2016) Polym Degrad Stab 124:1

    Article  CAS  Google Scholar 

  44. Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R (2008) Nano Lett 8:36

    Article  CAS  Google Scholar 

  45. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M (2015) Polym Eng Sci 55:1720

    Article  CAS  Google Scholar 

  46. Li M, Jeong YG (2011) Compos Part A 42:560

    Article  CAS  Google Scholar 

  47. Jeong HM, Choi MY, Ahn YT (2006) Macromol Res 14:312

    Article  CAS  Google Scholar 

  48. Morgan AB, Gilman JW (2003) J Appl Polym Sci 87:1329

    Article  CAS  Google Scholar 

  49. Jung I, Dikin D, Park S, Cai W, Mielke SL, Ruoff RS (2008) J Phys Chem C 112:20264

    Article  CAS  Google Scholar 

  50. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M, Najafi M, Sobani M, Mirshafiei-Langari SA (2015) Iran Polym J 24:51

    Article  CAS  Google Scholar 

  51. Li C, Han J, Ryu CY, Benicewicz BC (2006) Macromolecules 39:3175

    Article  CAS  Google Scholar 

  52. Li C, Benicewicz BC (2005) Macromolecules 38:5929

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Iran’s National Elites Foundation (INSF) is greatly appreciated for its financial support (Grant Number: 15/76508).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Najafi or Hossein Roghani-Mamaqani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezri, K., Najafi, M. & Roghani-Mamaqani, H. Reversible addition fragmentation chain transfer polymerization of styrene from the edge of graphene oxide nanolayers. J Polym Res 24, 34 (2017). https://doi.org/10.1007/s10965-017-1193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1193-8

Keywords

Navigation