Skip to main content
Log in

Preparation of chemically attached polyamide thin film membrane using different diamines: separation and computational investigation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The research in this work exploits different diamines to crosslink chemically a polyamide thin layer to a PES/PI blend substrate through a new procedure. The main goal was to prepare innovative new polyamide (PA) thin film membranes without using an aqueous phase (unlike conventional methods to fabricate the PA thin layers) and to try chemically binding the formed thin layer to the substrate. Different diamines, namely EDA (ethylenediamine), PIP (piperazine), and PPD (para-phenylenediamine) were used as monomers and crosslinkers to open the imide rings and to provide the desired sites for better attaching of the generated thin layers to the support. Computational methods were used to assess the reaction mechanism and strength of the formed bindings. Chemical and physical properties of the modified and unmodified membranes were measured by SEM, AFM, FTIR-ATR, TGA, and contact angle test. The IR spectra and the measured performance indicated that the thin layer was successfully formed. The rejection capability of the membranes against Na2SO4 increased from near 2% to about 85% in the TMC-EDA modified membrane. Antifouling properties of the obtained membranes were measured by BSA solution and E. coli bacteria, showing a flux recovery ratio near 97% and favorable antibacterial properties for the TMC-EDA modified membrane. The calculation results also proved that the EDA was the best crosslinker and monomer for this purpose, and accordingly, the TMC-EDA modified membrane showed the desired binding strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eriksson P (1988) Water and salt transport through two types of polyamide composite membranes. J Membr Sci 36:297–313

    Article  CAS  Google Scholar 

  2. Raman LP, Cheryna M, Rajagopalan N (1994) Consider nanofiltration for membrane separations. Chem Eng Prog 90(3):68–74

    CAS  Google Scholar 

  3. Cadotte J, Forester R, Kim M, Petersen R, Stocker T (1988) Nanofiltration membranes broaden the use of membrane separation technology. Desalination 70(1-3):77–88

    Article  CAS  Google Scholar 

  4. Mansourpanah Y, Kakanejadifard A, Dehrizi FG, Tabatabaei M, Afarani HS (2015) Increasing and enhancing the performance and antifouling characteristics of PES membranes using acrylic acid and microwave-modified chitosan. Korean J Chem Eng 32(1):149–158

    Article  CAS  Google Scholar 

  5. Lianchao L, Baoguo W, Huimin T, Tianlu C, Jiping X (2006) A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane. J Membr Sci 269(1):84–93

    Article  Google Scholar 

  6. Verissimo S, Peinemann KV, Bordado J (2006) Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes. J Membr Sci 279(1):266–275

    Article  CAS  Google Scholar 

  7. Morgan PW (1965) Condensation polymers: by interfacial and solution methods (Vol. 10). Interscience Publishers, New York, pp 19–64

    Google Scholar 

  8. Bhattacharya A, Ray P, Brahmbhatt H, Vyas KN, Joshi SV, Devmurari CV, Trivedi JJ (2006) Pesticides removal performance by low‐pressure reverse osmosis membranes. J Appl Polym Sci 102(4):3575–3579

    Article  CAS  Google Scholar 

  9. Jeong BH, Hoek EM, Yan Y, Subramani A, Huang X, Hurwitz G, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1):1–7

    Article  CAS  Google Scholar 

  10. Freger V (2003) Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 19(11):4791–4797

    Article  CAS  Google Scholar 

  11. Song Y, Sun P, Henry LL, Sun B (2005) Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J Membr Sci 251(1):67–79

    Article  CAS  Google Scholar 

  12. Mansourpanah Y, Jafari Z (2015) Efficacy of different generations and concentrations of PAMAM–NH 2 on the performance and structure of TFC membranes. React Funct Polym 93:178–189

    Article  CAS  Google Scholar 

  13. Chen SH, Chang DJ, Liou RM, Hsu CS, Lin SS (2002) Preparation and separation properties of polyamide nanofiltration membrane. J Appl Polym Sci 83:1112–1118

    Article  CAS  Google Scholar 

  14. Zhou Y, Yu S, Liu M, Gao C (2005) Preparation and characterization of polyamide-urethane thin-film composite membranes. Desalination 180(1):189–196

    Article  CAS  Google Scholar 

  15. Liu LF, Yu SC, Wu LG, Gao CJ (2008) Study on a novel antifouling polyamide–urea reverse osmosis composite membrane (ICIC–MPD): III. Analysis of membrane electrical properties. J Membr Sci 310(1):119–128

    Article  CAS  Google Scholar 

  16. Singh PS, Joshi SV, Trivedi JJ, Devmurari CV, Rao AP, Ghosh PK (2006) Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. J Membr Sci 278(1):19–25

    Article  CAS  Google Scholar 

  17. Ghosh AK, Hoek EM (2009) Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J Membr Sci 336(1):140–148

    Article  CAS  Google Scholar 

  18. Mansourpanah Y, Gheshlaghi A, Rekabdar F (2012) Structural analysis of PES nanoporous membranes under different conditions of preparation. Desalin Water Treat 50(1-3):302–309

    Article  CAS  Google Scholar 

  19. Rahimpour A, Madaeni SS (2007) Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties. J Membr Sci 305(1):299–312

    Article  CAS  Google Scholar 

  20. Mansourpanah Y, Madaeni SS, Rahimpour A, Kheirollahi Z, Adeli M (2010) Changing the performance and morphology of polyethersulfone/polyimide blend nanofiltration membranes using trimethylamine. Desalination 256(1):101–107

    Article  CAS  Google Scholar 

  21. Vanherck K, Koeckelberghs G, Vankelecom IF (2013) Crosslinking polyimides for membrane applications: a review. Prog Polym Sci 38(6):874–896

    Article  CAS  Google Scholar 

  22. Kapantaidakis GC, Koops GH (2002) High flux polyethersulfone–polyimide blend hollow fiber membranes for gas separation. J Membr Sci 204(1):153–171

    Article  CAS  Google Scholar 

  23. Powell CE, Duthie XJ, Kentish SE, Qiao GG, Stevens GW (2007) Reversible diamine cross-linking of polyimide membranes. J Membr Sci 291(1):199–209

    Article  CAS  Google Scholar 

  24. Liu Y, Wang R, Chung TS (2001) Chemical cross-linking modification of polyimide membranes for gas separation. J Membr Sci 189(2):231–239

    Article  CAS  Google Scholar 

  25. Qiao X, Chung TS (2006) Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol. AIChE J 52(10):3462–3472

    Article  CAS  Google Scholar 

  26. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

    Article  CAS  Google Scholar 

  27. Shao L, Chung TS, Goh SH, Pramoda KP (2005) Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance. J Membr Sci 256(1):46–56

    CAS  Google Scholar 

  28. Tin PS, Chung TS, Liu Y, Wang R, Liu SL, Pramoda KP (2003) Effects of cross-linking modification on gas separation performance of Matrimid membranes. J Membr Sci 225(1):77–90

    Article  CAS  Google Scholar 

  29. Cao C, Chung TS, Liu Y, Wang R, Pramoda KP (2003) Chemical cross-linking modification of 6FDA-2, 6-DAT hollow fiber membranes for natural gas separation. J Membr Sci 216(1):257–268

    Article  CAS  Google Scholar 

  30. Liu Y, Chung TS, Wang R, Li DF, Chng ML (2003) Chemical cross-linking modification of polyimide/poly (ether sulfone) dual-layer hollow-fiber membranes for gas separation. Ind Eng Chem Res 42(6):1190–1195

    Article  CAS  Google Scholar 

  31. Shao L, Chung TS, Goh SH, Pramoda KP (2004) Transport properties of cross-linked polyimide membranes induced by different generations of diaminobutane (DAB) dendrimers. J Membr Sci 238(1):153–163

    Article  CAS  Google Scholar 

  32. Zhao HY, Cao YM, Ding XL, Zhou MQ, Liu JH, Yuan Q (2008) Poly (ethylene oxide) induced cross-linking modification of Matrimid membranes for selective separation of CO2. J Membr Sci 320(1):179–184

    Article  CAS  Google Scholar 

  33. Zhao HY, Cao YM, Ding XL, Zhou MQ, Yuan Q (2008) Effects of cross-linkers with different molecular weights in cross-linked Matrimid 5218 and test temperature on gas transport properties. J Membr Sci 323(1):176–184

    Article  CAS  Google Scholar 

  34. Solomon MFJ, Bhole Y, Livingston AG (2012) High flux membranes for organic solvent nanofiltration (OSN)—Interfacial polymerization with solvent activation. J Membr Sci 423:371–382

    Article  Google Scholar 

  35. Toh YS, Lim FW, Livingston AG (2007) Polymeric membranes for nanofiltration in polar aprotic solvents. J Membr Sci 301(1):3–10

    CAS  Google Scholar 

  36. Wang YQ, Su YL, Ma XL, Sun Q, Jiang ZY (2006) Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance. J Membr Sci 283(1):440–447

    Article  CAS  Google Scholar 

  37. Alkorta I, Blanco F, Elguero J (2010) Dihydrogen bond cooperativity in aza-borane derivatives. J Phys Chem A 114(32):8457–8462

    Article  CAS  Google Scholar 

  38. Atkins PW, Friedman RS (2011) Molecular quantum mechanics. Oxford university press

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian. Gaussian. Inc, Wallingford

    Google Scholar 

  40. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  41. Karas BR, Foust DF, Dumas WV, Lamby EJ (1992) Aqueous pretreatments of polyetherimide to facilitate the bonding of electrolessly deposited copper. J Adhes Sci Technol 6(7):815–828

    Article  CAS  Google Scholar 

  42. Nadler R, Srebnik S (2008) Molecular simulation of polyamide synthesis by interfacial polymerization. J Membr Sci 315(1):100–105

    Article  CAS  Google Scholar 

  43. Freger V (2005) Kinetics of film formation by interfacial polycondensation. Langmuir 21(5):1884–1894

    Article  CAS  Google Scholar 

  44. Perrin DD (1972) Dissociation constants of organic bases in aqueous solution: supplement, Butterworths

  45. Dennington R, Keith T, Millam J (2009) GaussView version 5. Semichem Inc, U.S

    Google Scholar 

  46. Kim IC, Lee KH (2002) Preparation of interfacially synthesized and silicone-coated composite polyamide nanofiltration membranes with high performance. Ind Eng Chem Res 41:5523–5528

    Article  CAS  Google Scholar 

  47. Shao L, Liu L, Cheng SX, Huang YD, Ma J (2008) Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport. J Membr Sci 312:174–185

    Article  CAS  Google Scholar 

  48. Dietz P, Hansma PK, Inacker O, Ehmann HD, Herrmann KH (1992) Surface pore structures of micro- and ultrafiltration membranes imaged with the atomic force microscope. J Membr Sci 65:101–111

    Article  CAS  Google Scholar 

  49. Mansourpanah Y, Madaeni SS, Adeli M, Rahimpour A, Farhadian A (2009) Surface modification and preparation of nanofiltration membrane from polyethersulfone/polyimide blend-use of a new material (Polyethyleneglycol-Triazine). J Appl Polym Sci 112:2888–2895

    Article  CAS  Google Scholar 

  50. Zabaradsti A, Kakanejadifard A, Ghasemian G (2012) Theoretical study of molecular interactions of phosphorus ylide with hypohalous acids HOF, HOCl and HOBr. Comput Theor Chem 989:1–6

    Article  CAS  Google Scholar 

  51. Basser MA, Mote NA (2001) Synthesis and antimicrobial activity of some Schiff bases from benzothiazoles. Asian J Chem 13:496–500

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. H. Shamloei (Computational Research Laboratory, Lorestan University) for his guidance in computational assessments throughout the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Mansourpanah.

Additional information

Highlights

• Preparation of a polymeric thin film membrane in a new procedure

• To try chemically attaching the formed thin layer to the PES/PI support

• Using different diamines as monomer and cross-linker to open the imide rings in PI

• Increasing the rejection and antifouling as well as antibacterial properties of the membranes

• Using computational methods to investigate the strength of the formed bindings in thin layer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansourpanah, Y., Ostadchinigar, A. Preparation of chemically attached polyamide thin film membrane using different diamines: separation and computational investigation. J Polym Res 24, 26 (2017). https://doi.org/10.1007/s10965-017-1186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1186-7

Keywords

Navigation