Skip to main content
Log in

Structural, morphological and magnetic characterization of metal-chitosan/poly (vinyl amine) complexes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cu2+ and Ni2+ complexes of chitosan/poly(vinyl amine) (CS/PVAm) composites were prepared. The metal-CS/PVAm complexes were characterized by FT-IR spectroscopy, SEM-EDX, X-ray diffraction (XRD), and magnetic moment determination. FT-IR spectra of the metal-CS/PVAm complexes showed the characteristic bands of anhidroglucose unit were affected by the metal complexation, and new bands assigned to Me–N and Me-O bonds were observed. SEM images of the surface of metal-composite complexes show the influence of metal ion on the morphology of the complexes, the strong binding of Cu2+ and Ni2+, involving most of the amino groups, leading to a dense surface structure. The chemical composition on the surface of metal-CS/PVAm complexes was determined from EDX measurements. XRD provided information about the amorphous or crystalline nature of the composite and metal-composite complexes. Using magnetic susceptibility method, the oxidation degree of metal ions from the polymer phase, the homogeneous distribution of the ligand groups from the volume of the CS/PVAm beads, and the existence of the antiferromagnetic interactions between the metal ions were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Beyazit N, Çatıkkas B, Bayraktar Ş, Demetgül C (2016) Synthesis, characterization and catecholase-like activity of new Schiff base metal complexes derived from visnagin: theoretical and experimental study. J Mol Struct 1119:124–132

    Article  CAS  Google Scholar 

  2. Syrlybaeva R, Movsum-zade N, Safiullina I, Puzin Y, Movsum-zade E (2015) Polymer-metal complexes of polyacrylonitrile and its copolymers: synthesis and theoretical study. J Polym Res 22:100–108

    Article  Google Scholar 

  3. Azarudeen RS, AhamedMAR BAR (2011) Biological and thermal investigations of polychelates derived from a novel terpolymer ligand. J Polym Res 18:1331–1341

    Article  CAS  Google Scholar 

  4. Moroi GN (2012) Investigation on structure and properties of cobalt(II)/polyesterurethane metallopolymer films. J Polym Res 19:18

    Article  Google Scholar 

  5. Jakubiak-Marcinkowska A, Legan M, Jezierska J (2013) Molecularly imprinted polymeric Cu(II) catalysts with modified active centres mimicking oxidation enzymes. J Polym Res 20:1–11

    Article  CAS  Google Scholar 

  6. Al ZW (2013) Biological activities of schiff bases and their complexes: a review of recent works. Int J Org Chem 03:73–95

    Article  Google Scholar 

  7. Kumar S, Dhar DN, Saxena PN (2009) Applications of metal complexes of Schiff bases-a review. J Sci Ind Res 68:181–187

    CAS  Google Scholar 

  8. Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. J Basic Appl Sci 4:119–133

    Google Scholar 

  9. Masoud MS, Abdou AEH, Ahmed WM (2015) Synthesis and characterization of some transition metals polymer complexes. J Mol Struct 1095:135–143

    Article  CAS  Google Scholar 

  10. Dragan ES, Apopei Loghin DF, Cocarta AI (2014) Efficient sorption of Cu2+ by composite chelating sorbents based on potato starch-graft-Polyamidoxime embedded in chitosan beads. ACS Appl Mater Interfaces 6:16577–16592

    Article  CAS  Google Scholar 

  11. Dragan ES, Dinu MV (2015) Recent developments in composite biosorbents and their applications in wastewaters treatment. Res J Chem Environ 19:42–58

    Google Scholar 

  12. Gutsanu V, Schitco C, Lisa G, Turta C (2011) Ultra dispersed particles of Fe (III) compounds in the strongly basic crosslinked ionic polymer-precursors for new sorbents and catalysts. Mater Chem Phys 130:853–861

    Article  CAS  Google Scholar 

  13. Bratskaya S, Voit A, Privar Y, Ziatdinov A, Ustinov A, Marinina D, Pestova A (2016) Metal ion binding by pyridylethyl-containing polymers: experimental and theoretical study. Dalton Trans 45:12372–12383

    Article  CAS  Google Scholar 

  14. El-Bindary AA, El-Sonbati AZ, Diaba MA, Ghoneim MM, Serag LS (2016) Polymeric complexes - LXII. Coordination chemistry of supramolecular Schiff base polymer complexes - A review. J Mol Liq 216:318–329

    Article  CAS  Google Scholar 

  15. El-Sonbati AZ, Belal AAM, Diab MA, Mohamed RH (2011) Polymer complexes. LXIII Supramolecular and coordination chemistry of some polymer complexes and their applications. J Mol Struct 990:26–31

    Article  CAS  Google Scholar 

  16. Diab MA, El-Sonbati AZ, Attallah ME (2012) Polymer complexes. LV. Spectroscopic, thermal studies, and coordination of metal ions N-[3-(5-amino-1,2,4-triazolo)] acrylamide polymer complexes. J Coord Chem 65:539–549

    Article  CAS  Google Scholar 

  17. Trimukhe KD, Bachate S, Gokhale DV, Varma AJ (2007) Metal complexes of crosslinked chitosans part II. An investigation of their hydrolysis to chitooligosaccharides using chitosanase. Int J Biol Macromol 41:491–496

    Article  CAS  Google Scholar 

  18. Trimukhe KD, Varma AJ (2008) Complexation of heavy metals by crosslinked chitin and its deacetylated derivatives. Carbohydr Polym 71:698–702

    Article  CAS  Google Scholar 

  19. Trimukhe KD, Varma AJ (2009) Metal complexes of crosslinked chitosans: correlations between metal ion complexation values and thermal properties. Carbohydr Polym 75:63–70

    Article  CAS  Google Scholar 

  20. Dragan ES, Dinu MV, Lisa G, Trochimczuk AW (2009) Study on metal complexes of chelating resins bearing iminodiacetate groups. Eur Polym J 45:2119–2130

    Article  CAS  Google Scholar 

  21. Ruiz M, Sastre AM, Guibal E (2000) Palladium sorption on glutaraldehyde-crosslinked chitosan. React Funct Polym 45:155–173

    Article  CAS  Google Scholar 

  22. Enescu D, Hamciuc V, Timpu D, Harabagiu V, Simionescu BC (2008) Polydimethylsiloxane-modified chitosan. Complexes Divalent Met J Optoelectron Adv Mater 10:1473–1477

    CAS  Google Scholar 

  23. Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  24. Cocarta AI, Dragan ES (2014) Composite microspheres based on chitosan and poly(vinyl amine) and their sorption capacity for Cu2+. Cellul Chem Technol 46:495–501

    Google Scholar 

  25. Dragan ES, Cocarta AI, Dinu MV (2014) Facile fabrication of chitosan/poly(vinyl amine) composite beads with enhanced sorption of Cu2+. Equilibrium, kinetics, and thermodynamics. Chem Eng J 255:659–669

    Article  CAS  Google Scholar 

  26. Cocarta AI, Gutanu V, Dragan ES (2015) Comparative sorption of Co2+, Ni2+ and Cr3+ onto chitosan/poly(vinyl amine) composite beads. Cellul Chem Technol 49:775–782

    CAS  Google Scholar 

  27. Gamzazade AI, Shimac VM, Skljar AM, Stykova EV, Pavlova SA, Rogozin SV (1985) Investigation of the hydrodynamic properties of chitosan solutions. Acta Polym 36:420–424

    Article  CAS  Google Scholar 

  28. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

    Article  CAS  Google Scholar 

  29. Day C, Selbin J (1969) Theoretical inorganic chemistry. Khimia, Moscow (in Russian)

    Google Scholar 

  30. Gutsanu VL, Muntyan SA, Shon TM (1977) Magnetic studies of complexing ion exchangers with a low Ni2+ content. Zh Fiz Khim 51:1524

    CAS  Google Scholar 

  31. Mekahlia S, Bouzid B (2009) Chitosan-copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study. Phys Procedia 2:1045–1053

    Article  CAS  Google Scholar 

  32. Guibal E (2008) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  Google Scholar 

  33. Bogdanov AP, Zelentsov VV, Padalko VM (1977) Magnetochemistry and electron spectroscopy of coordination compounds of nickel (II). Zh Neorg Khim 22:2611

    CAS  Google Scholar 

  34. Moiseeva P, Sineavskiy VG, Romankevich MY (1971) Magnetochemical study of aminoacetate ion exchange resins with transition metal ions. Zh Obsch Khim 41:943

    CAS  Google Scholar 

  35. Tolmachov VN, Lomako LA, Pivnenko NC (1966) The processes of complexation on carboxylated cation exchangers. The study of the magnetic susceptibility. Ukrain Chem J 32:334

    CAS  Google Scholar 

  36. Safin RS, Gutsanu VL, Vishnevskaya GP (1987) Effect of anions on the complexation of copper (II) with an anion exchanger EDE-10P. EPR spectra of ionites complexes obtained under mildly acidic conditions. Zh Fiz Khim 61:2134

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCSIS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ecaterina Stela Dragan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocarta, A.I., Gutanu, V. & Dragan, E.S. Structural, morphological and magnetic characterization of metal-chitosan/poly (vinyl amine) complexes. J Polym Res 24, 20 (2017). https://doi.org/10.1007/s10965-016-1182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1182-3

Keywords

Navigation