Skip to main content
Log in

Synergistic effects of shear flow and nucleating agents on the crystallization mechanisms of Poly (Lactic Acid)

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This paper presents a study of the effects of microscopic particles of talc on the crystallization kinetics of PLA. Our study covers the quiescent conditions and the case where a shear flow is applied “short term shearing”. The incorporation of talc increases the crystallization rate; it enhances the nucleation mechanism through additional heterogeneous nuclei. The microstructure is highly affected by the addition of talc due to the increase of the number of nuclei (i.e. reduced crystalline size). The application of a shear flow increases the ability of PLA to crystallize even in the presence of talc particles. The impact of shear rate becomes dramatically important just after a critical shear rate of 0.1 s−1. It turns out that the shear rate enhances more the crystallization of PLA with talc than the pure PLA under quiescent conditions. Consequently, a supplementary contribution “synergistic effects” is responsible of the relative enhancement of the crystallization of PLA in the presence of shear flow and talc. With combining different experimental analysis techniques and modeling of the crystallization kinetics, the synergistically effects were quantified in terms of the nucleation density induced by the mutual interaction between shear flow and particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  CAS  Google Scholar 

  2. De Santis F, Pantani R (2015) Melt compounding of poly (lactic acid) and talc: assessment of material behavior during processing and resulting crystallization. J Polym Res 22:242

    Article  Google Scholar 

  3. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640

    Article  CAS  Google Scholar 

  4. Zhang J, Duan Y, Sato H, et al. (2005) Crystal modifications and thermal behavior of poly( L -lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021

    Article  CAS  Google Scholar 

  5. Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly( L -lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41:1352–1357

    Article  CAS  Google Scholar 

  6. Kalish JP, Aou K, Yang X, Hsu SL (2011) Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(l-lactic acid). Polymer (Guildf) 52:814–821

    Article  CAS  Google Scholar 

  7. Pan P, Kai W, Zhu B, et al. (2007) Polymorphous crystallization and multiple melting behavior of poly ( L -lactide ): molecular weight dependence. Macromolecules 40:6898–6905

    Article  CAS  Google Scholar 

  8. Di Lorenzo ML (2006) The crystallization and melting processes of poly(L-lactic acid). Macromol Symp 234:176–183

    Article  CAS  Google Scholar 

  9. Yasuniwa M, Iura K, Dan Y (2007) Melting behavior of poly(l-lactic acid): effects of crystallization temperature and time. Polymer (Guildf) 48:5398–5407

    Article  CAS  Google Scholar 

  10. Kawai T, Rahman N, Matsuba G, et al. (2007) Crystallization and melting behavior of poly (L-lactic acid). Macromolecules 40:9463–9469

    Article  CAS  Google Scholar 

  11. Monasse B (1995) Nucleation and anisotropic crystalline growth of polyethylene under shear. J Mater Sci 30:5002–5012

    Article  CAS  Google Scholar 

  12. Zhong Y, Fang H, Zhang Y, et al. (2013) Rheologically determined critical shear rates for shear-induced nucleation rate enhancements of poly(lactic acid). ACS Sustain Chem Eng 1:663–672

    Article  CAS  Google Scholar 

  13. Koscher E, Fulchiron R (2002) Influence of shear on polypropylene crystallization: morphology development and kinetics. Polymer (Guildf) 43:6931–6942

    Article  CAS  Google Scholar 

  14. Naudy S, David L, Rochas C, Fulchiron R (2007) Shear induced crystallization of poly(m-xylylene adipamide) with and without nucleating additives. Polymer (Guildf) 48:3273–3285

    Article  CAS  Google Scholar 

  15. Lagasse RR, Maxwell B (1976) An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci 16:189–199

    Article  CAS  Google Scholar 

  16. Tang H, Chen J-B, Wang Y, et al. (2012) Shear flow and carbon nanotubes synergistically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding. Biomacromolecules 13:3858–3867

    Article  CAS  Google Scholar 

  17. Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleating agents in shear induced crystallization of isotactic polypropylenes**. Int Polym Process 12:72–77

    Article  CAS  Google Scholar 

  18. Yu F, Liu T, Zhao X, et al. (2012) Effects of talc on the mechanical and thermal properties of polylactide. J Appl Polym Sci 125:E99–E109

    Article  CAS  Google Scholar 

  19. Avrami M (1939) Kinetics of phase change. I General Theory J Chem Phys 7:1103

    CAS  Google Scholar 

  20. Tsuji H, Tezuka Y, Saha SK, et al. (2005) Spherulite growth of l-lactide copolymers: effects of tacticity and comonomers. Polymer (Guildf) 46:4917–4927

    Article  CAS  Google Scholar 

  21. Naiki M, Fukui Y, Matsumura T, et al. (2001) The effect of talc on the crystallization of isotactic polypropylene. J Appl Polym Sci 79:1693–1703

    Article  CAS  Google Scholar 

  22. Patel RM, Spruiell JE (1991) Crystallization kinetics during polymer processing—analysis of available approaches for process modeling. Polym Eng Sci 31:730–738

    Article  CAS  Google Scholar 

  23. Hoffman JD, Miller RL (1997) Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151–3212

    Article  CAS  Google Scholar 

  24. Hoffman JD, Weeks JJ (1962) Rate of Spherulitic crystallization with chain folds in Polychlorotrifluoroethylene. J Chem Phys 37:1723

    Article  CAS  Google Scholar 

  25. Refaa Z, Boutaous M, Xin S, Siginer DA (2016) Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc. J Therm Anal Calorim. doi:10.1007/s10973-016-5961-1

    Google Scholar 

  26. Courgneau C, Ducruet V, Avérous L, et al. (2013) Nonisothermal crystallization kinetics of poly(lactide)-effect of plasticizers and nucleating agent. Polym Eng Sci 53:1085–1098

    Article  CAS  Google Scholar 

  27. Eder G, Janeschitz-Kriegl H, Liedauer S (1992) Influence of flow on the crystallization kinetics of polymers. Progr Colloid Polym Sci 87:129–131

    Article  CAS  Google Scholar 

  28. Liedauer S, Eder G, Janeschitz-Kriegl H, et al. (1993) On the kinetics of shear induced crystallization in polypropylene. Int Polym Process 8:236–244

    Article  CAS  Google Scholar 

  29. Kumaraswamy G, Issaian AM, Kornfield JA (1999) Shear-enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules 32:7537–7547

    Article  CAS  Google Scholar 

  30. D’Haese M, Van Puyvelde P, Langouche F (2010) Effect of particles on the flow-induced crystallization of polypropylene at processing speeds. Macromolecules 43:2933–2941

    Article  Google Scholar 

  31. van Meerveld J, Peters GWM, Hütter M (2004) Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta 44:119–134

    Article  CAS  Google Scholar 

  32. Byelov D, Panine P, Remerie K, et al. (2008) Crystallization under shear in isotactic polypropylene containing nucleators. Polymer 49:3076–3083

    Article  CAS  Google Scholar 

  33. Coppola S, Balzano L, Gioffredi E, et al. (2004) Effects of the degree of undercooling on flow induced crystallization in polymer melts. Polymer 45:3249–3256

    Article  CAS  Google Scholar 

  34. D’Haese M, Langouche F, Van Puyvelde P (2013) On the effect of particle size, shape, concentration, and aggregation on the flow-induced crystallization of polymers. Macromolecules 46:3425–3434

    Article  Google Scholar 

  35. Tribout C, Monasse B, Haudin JM (1996) Experimental study of shear-induced crystallization of an impact polypropylene copolymer. Colloid Polym Sci 274:197–208

    Article  CAS  Google Scholar 

  36. Pantani R, Coccorullo I, Volpe V, Titomanlio G (2010) Shear-induced nucleation and growth in isotactic polypropylene. Macromolecules 43:9030–9038

    Article  CAS  Google Scholar 

  37. Zuidema H, Peters GWM, Meijer HEH (2001) Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers. Macromol Theory Simulations 10:447–460

    Article  CAS  Google Scholar 

  38. Zinet M, El Otmani R, Boutaous M, Chantrenne P (2010) Numerical modeling of nonisothermal polymer crystallization kinetics: flow and thermal effects. Polym Eng Sci 50:2044–2059

    Article  CAS  Google Scholar 

  39. Schneider W, Koppl A, Berger J (1988) Non-isothermal crystallization of polymers. Int Polym Process 2:151–154

    CAS  Google Scholar 

  40. Ma Z, Steenbakkers RJA, Giboz J, Peters GWM (2010) Using rheometry to determine nucleation density in a colored system containing a nucleating agent. Rheol Acta 50:909–915

    Article  Google Scholar 

  41. Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364

    Article  CAS  Google Scholar 

  42. Mykhaylyk OO, Chambon P, Graham RS, et al. (2008) The specific work of flow as a criterion for orientation in polymer crystallization. Macromolecules 41:1901–1904

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Boutaous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaa, Z., Boutaous, M., Xin, S. et al. Synergistic effects of shear flow and nucleating agents on the crystallization mechanisms of Poly (Lactic Acid). J Polym Res 24, 18 (2017). https://doi.org/10.1007/s10965-016-1179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1179-y

Keywords

Navigation