Producing PLGA fine particles containing high magnetite nanoparticles by using the electrospray technique

  • Abdol-Rahim Faramarzi
  • Jalal BarzinEmail author
  • Hamid Mobedi


Loading magnetite (Fe3O4) nanoparticles (NPs), extensively using magnetic agents in magnetic resonance imaging (MRI) and drug delivery in a matrix of polymeric fine particles (FPs), can optimize not only the delivery of these diagnostic and therapeutic agents but also the design of multifunctional drugs. In an effort to use a new method for producing high magnetite loaded polymeric particles, oleic acid (OA) capped magnetite NPs were synthesized and loaded into biocompatible and biodegradable FPs of poly lactic-co-glycolic acid (PLGA) by using the electrospray (ES) technique; and the effect of voltage, flow rate and magnetite content on the morphology, size, size distribution, uniformity and magnetic properties of fabricated magnetic FPs (MFPs) were studied. Results of SEM images and calculations showed that solution flow rate is a major factor in ES and the particle size of magnetite loaded PLGA FPs increases considerably as the flow rate increases. Particle size did not change considerably due to an increase in voltage; however, particle uniformity first increased and then decreased due to an increase in flow rate or voltage. High magnetite content of 72% was achieved for magnetite loaded PLGA FPs and an increase in the magnetite content resulted in an increase in the saturation magnetization of magnetite loaded PLGA FPs; though, their sphericity decreased.


Electrospray PLGA Magnetite Morphology Size Uniformity 


  1. 1.
    Luan X, Skupin M, Siepmann J, Bodmeier R (2006) Key parameters affecting the initial release (burst) and encapsulation efficiency of peptide-containing poly (lactide-co-glycolide) microparticles. Int J Pharm 324:168–175CrossRefGoogle Scholar
  2. 2.
    Byrne J, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626CrossRefGoogle Scholar
  3. 3.
    Shapiro EM (2015) Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn Reson Med 73:376–389CrossRefGoogle Scholar
  4. 4.
    Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. In: Sezer AD (ed) Application of nanotechnology in drug delivery. InTech, RijekaGoogle Scholar
  5. 5.
    Bagherzadeh R, Latifi M, Najar SS, Tehran MA, Kong L (2013) Three-dimensional pore structure analysis of nano/microfibrous scaffolds using confocal laser scanning microscopy. J Biomed Mater Res Part A 101A(3):765–774CrossRefGoogle Scholar
  6. 6.
    Lotfi M, Bagherzadeh R, Naderi-Meshkin H, Mahdipour E, Mafinezhad A, Sadeghnia HR, Esmaily H, Maleki M, Hasssanzadeh H, Ghayaour-Mobarhan M, Bidkhori HR, Bahrami AR (2016) Hybrid chitosan–ß-glycerol phosphate–gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering. Biopolymers 105(3):163–175CrossRefGoogle Scholar
  7. 7.
    Chakraborty S, Liao I-C, Adler A, Leong KW (2009) Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61:1043–1054CrossRefGoogle Scholar
  8. 8.
    Vellayappan MV, Venugopal JR, Ramakrishn S, Ray S, Ismail AF, Mandal M, Manikandan A, Sealg S, Jaganathan SK (2016) Electrospinning applications from diagnosis to treatment of diabetes. RSC Adv 6:83638–83655CrossRefGoogle Scholar
  9. 9.
    Ciach T (2007) Application of electro-hydro-dynamic atomization in drug delivery. J Drug Del Sci Tech 17(6):367–375CrossRefGoogle Scholar
  10. 10.
    Wang H, Liu Q, Yang Q, Li Y, Wang W, Sun L, Zhang C, Li Y (2010) Electrospun poly(methyl methacrylate) nanofibers and microparticles. J Mater Sci 45:1032–1038CrossRefGoogle Scholar
  11. 11.
    Bafqi MSS, Bagherzadeh R, Latifi M (2015) Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J Polym Res 22:130CrossRefGoogle Scholar
  12. 12.
    Gheibi A, Bagherzadeh R, Merati AA, Latifi M (2014) Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J Polym Res 21:571CrossRefGoogle Scholar
  13. 13.
    Gheibi A, Latifi M, Merati AA, Bagherzadeh R (2014) Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications. J Polym Res 21:469CrossRefGoogle Scholar
  14. 14.
    Rostami SG, Bafghi MSS, Bagherzadeh R, Latifi M, Gorji M (2015) Multi-layer electrospun nanofiber mats with chemical agent sensor function. J Ind Text 45(3):467–480CrossRefGoogle Scholar
  15. 15.
    Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882CrossRefGoogle Scholar
  16. 16.
    Lassalle V, Ferreira ML (2007) PLA nano and microparticles for drug delivery: An overview of the methods of preparation. Macromol Biosci 7:767–783CrossRefGoogle Scholar
  17. 17.
    Ye M, Kim S, Park K (2010) Issues in long-term protein delivery using biodegradable microparticles. J Control Release 146:241–260CrossRefGoogle Scholar
  18. 18.
    Bagherzadeh R, Latifi M, Najar SS, Kong L (2014) Experimental verification of theoretical prediction of fiber to fiber contacts in electrospun multilayer nano-microfibrous assemblies: Effect of fiber diameter and network porosity. J Ind Text 43(4):483–495CrossRefGoogle Scholar
  19. 19.
    Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17:4617–4621CrossRefGoogle Scholar
  20. 20.
    Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876CrossRefGoogle Scholar
  21. 21.
    Ed J, Blanco-Príeto M, Ygartua P, Santoyo S (2001) PLGA microparticles: possible vehicles for topical drug delivery. Int J Pharm 226:181–184CrossRefGoogle Scholar
  22. 22.
    Ratzinger G, Agrawal P, Körner W, Lonkai J, Sanders HMHF, Terreno E, Wirth M, Strijkers GJ, Nicolay K, Gabor F (2010) Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents. Biomaterials 31:8716–8723CrossRefGoogle Scholar
  23. 23.
    Faramarzi AR, Barzin J, Mobedi H (2016) Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles. Fibers Polym 17(11):1806–1819CrossRefGoogle Scholar
  24. 24.
    Makadia HK, Siegel SJ (2011) Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397CrossRefGoogle Scholar
  25. 25.
    Djordjevic L, Primorac M, Stupar M, Krajisnik D (2004) Characterization of capry-locaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm 271:11–19CrossRefGoogle Scholar
  26. 26.
    Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nunthanid J, Luangtana-Anan M, Sriamornsak P (2008) Modulation of drug release kinetics of shellac-based matrix tablets by in situ polymerization through annealing process. Eur J Pharm Biopharm 69:1004–1013CrossRefGoogle Scholar
  27. 27.
    Guo XD, Tan JPK, Kim SH, Zhang LJ, Zhang Y, Hedrick JL, Yang YY, Qian Y (2009) Computational studies on self-assembled paclitaxel structures: templates for hierarchical block copolymer assemblies and sustained drug release. Biomaterials 30:6556–6563CrossRefGoogle Scholar
  28. 28.
    Yang YY, Chung TS, Ng NP (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22:231–241CrossRefGoogle Scholar
  29. 29.
    Gaete CG, Tsapis N, Silva L, Bourgaux C, Fattal E (2008) Morphology, structure and supramolecular organization of hybrid 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine-hyaluronic acid microparticles prepared by spray drying. Eur J Pharm Sci 34:12–21CrossRefGoogle Scholar
  30. 30.
    Bagherzadeh R, Latifi M, Najar SS, Tehran MA, Gorji M, Kong L (2012) Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material. Text Res J 82(1):70–76CrossRefGoogle Scholar
  31. 31.
    Bagherzadeh R, Najar SS, Latifi M, Tehran MA, Kong L (2013) A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. J Biomed Mater Res Part A 101A(7):2107–2117CrossRefGoogle Scholar
  32. 32.
    Saveh-Shemshaki N, Latifi M, Bagherzadeh R, Malekshahi M, Byranvand, Naseri N, Dabirian A (2016) Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning. Polym Adv Technol 27(3):358–365CrossRefGoogle Scholar
  33. 33.
    Bock N, Woodruff MA, Hutmacher DW, Dargaville TR (2011) Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 3:131–149CrossRefGoogle Scholar
  34. 34.
    Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J (2010) Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv 7(6):705–719CrossRefGoogle Scholar
  35. 35.
    Geerse KB, Marijnissen JCM (2003) Electrospray as means to produce monodisperse drug particles. In: Optimization of aerosol drug delivery. Kluwer academic publishers, Delft, NetherlandsGoogle Scholar
  36. 36.
    Fu H, Liu Q, Chen D-R (2012) Performance study of a twin-head electrospray system. J Aerosol Sci 52:33–44CrossRefGoogle Scholar
  37. 37.
    Bock N, Dargaville TR, Woodruff MA (2012) Electrospraying of polymers with therapeutic molecules: State of the art. Prog Polym Sci 37:1510–1551CrossRefGoogle Scholar
  38. 38.
    Wu Y, Duong A, Lee LJ, Wyslouzil BE (2012) Electrospray production of nanoparticles for drug/nucleic acid delivery. In: Hashim AA (ed) The delivery of nanoparticles. InTech, RijekaGoogle Scholar
  39. 39.
    Culity BD, Graham CD (2009) Introduction to magnetic materials (second edition). John Wiley & Sons, Hoboken, New JerseyGoogle Scholar
  40. 40.
    Sheng-Nan S, Chao W, Zan-Zan Z, Yang-Long H, Venkatraman SS, Zhi-Chuan X (2014) Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin Phys B 23:037503CrossRefGoogle Scholar
  41. 41.
    Adams CF, Rai A, Sneddon G, Yiu HHP, Polyak B, Chari DM (2015) Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations. Nanomed Nanotechnol Biol Med 11(1):19–29CrossRefGoogle Scholar
  42. 42.
    Shen L, Laibinis PE, Hatton TA (1999) Bilayer Surfactant Stabilized Magnetic Fluids: Synthesis and Interactions at Interfaces. Langmuir 15:447–453CrossRefGoogle Scholar
  43. 43.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279Google Scholar
  44. 44.
    Yu WW, Falkner JC, Yavuz CT, Colvin VL (2004) Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun 20:2306–2307CrossRefGoogle Scholar
  45. 45.
    Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403CrossRefGoogle Scholar
  46. 46.
    Haryono A, Harmami SB, Sondari D (2013) Preparation of magnetite nanoparticles by thermal decomposition of iron (III) acetylacetonate with oleic acid as capping agent. Mater Sci Forum 737:153–158CrossRefGoogle Scholar
  47. 47.
    Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides-a review. Int j eng sci technol 2(8):127–146Google Scholar
  48. 48.
    Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7(1):1–37CrossRefGoogle Scholar
  49. 49.
    Wang Y, Wong JF, Teng X, Lin XZ, Yang H (2003) “Pulling” nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of alpha-cyclodextrin. Nano Lett 3(11):1555–1559CrossRefGoogle Scholar
  50. 50.
    Wang Y, Xu F, Zhang C, Lei D, Tang Y, Xu H, Zhang Z, Lu H, Du X, Yang G-Y (2011) High MR sensitive fluorescent magnetite nanocluster for stem cell tracking in ischemic mouse brain. Nanomed Nanotechnol Biol Med 7(6):1009–1019CrossRefGoogle Scholar
  51. 51.
    Garnier B, Tan S, Miraux S, Bled E, Brisson AR (2012) Optimized synthesis of 100 nm diameter magnetoliposomes with high content of maghemite particles and high MRI effect. Contrast Media Mol Imaging 7(2):231–239CrossRefGoogle Scholar
  52. 52.
    Farimani MHR, Shahtahmassebi N, Roknabadi MR, Ghows N (2014) Synthesis and study of structural and magnetic properties of super paramagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications. Nanomed J 1(2):71–78Google Scholar
  53. 53.
    Liu ZL, Liu YJ, Yao KL, Ding ZH, Tao J, Wang X (2002) Synthesis and magnetic properties of Fe3O4 nanoparticles. J Mater Synth Process 10:83–87CrossRefGoogle Scholar
  54. 54.
    Jafari-Nodoushan M, Barzin J, Mobedi H (2015) Size and morphology controlling of PLGA microparticles produced by electro hydrodynamic atomization. Polym Adv Technol 26:502–513CrossRefGoogle Scholar
  55. 55.
    Jafari-Nodoushan M, Mobedi H, Barzin J (2015) Encapsulation via electrohydrodynamic atomization spray technology (Electrospray). In: Mishra M (ed) Handbook of encapsulation and controlled release. CRC Press, Boca Raton, FloridaGoogle Scholar
  56. 56.
    Jafari-Nodoushan M, Barzin J, Mobedi H (2016) A stability-indicating HPLC method for simultaneous determination of morphine and naltrexone. J Chromatogr B 1011:163–170CrossRefGoogle Scholar
  57. 57.
    Patel D, Moona JY, Changb Y, Kimc TJ, Lee GH (2008) Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloids Surf, A: Physicochem Eng Aspects 313–314:91–94CrossRefGoogle Scholar
  58. 58.
    Mo Z, Zhang C, Guo R, Meng S, Zhang J (2011) Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation. Ind Eng Chem Res 50:3534–3539CrossRefGoogle Scholar
  59. 59.
    Zhang L, He R, Gu H-C (2006) Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci 253:2611–2617CrossRefGoogle Scholar
  60. 60.
    Almería B, Deng W, Fahmy TM, Gomez A (2010) Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci 343:125–133CrossRefGoogle Scholar
  61. 61.
    Xie J, Marijnissenb JCM, Wanga C-H (2006) Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27:3321–3332CrossRefGoogle Scholar
  62. 62.
    Gomez-Estaca J, Balaguer MP, Gavara R, Hernandez-Munoz P (2012) Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll 28:82–91Google Scholar
  63. 63.
    Gañán-Calvo AM, Dávila J, Barrero A (1997) Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci 28(2):249–275CrossRefGoogle Scholar
  64. 64.
    Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B (2000) Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J Aerosol Sci 31:65–95CrossRefGoogle Scholar
  65. 65.
    Xu Y, Skotak M, Hanna M (2006) Electrospray encapsulation of water-soluble protein with polylactide. I. Effects of formulations and process on morphology and particle size. J Microencapsul 23:69–78Google Scholar
  66. 66.
    Shenoy S, Bates W, Frisch H, Wnek G (2005) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer 46:3372–3384CrossRefGoogle Scholar
  67. 67.
    Hong Y, Lib Y, Yin Y, Lia D, Zou G (2008) Electrohydrodynamic atomization of quasi-monodisperse drug-loaded spherical/wrinkled microparticles. J Aerosol Sci 39:525–536CrossRefGoogle Scholar
  68. 68.
    Bagheri-Tar F, Sahimi M, Tsotsis TT (2007) Preparation ofn polyetherimide nanoparticles by an electrospray technique. Ind Eng Chem Res 46:3348–3357CrossRefGoogle Scholar
  69. 69.
    Lim YT, Noh Y-W, Han JH, Cai Q-Y, Yoon K-H, Chung BH (2008) Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells. small 4(10):1640–1645CrossRefGoogle Scholar
  70. 70.
    Okassa L, Marchais H, Douziech-Eyrolles L, Herve K, Cohen-Jonathan S, Munnier E, Souce M, Linassier C, Dubois P, Chourpa I (2007) Optimization of iron oxide nanoparticles encapsulation within poly(D,L-lactide-co-glycolide) sub-micron particles. Eur J Pharm Biopharm 67:31–38CrossRefGoogle Scholar
  71. 71.
    Liu X, Kaminski M, Chen H, Torno M, Taylor L, Rosengart A (2007) Synthesis and characterization of highly-magnetic biodegradable poly(D,L-lactide-co-glycolide) nanospheres. J Control Release 119:52–58CrossRefGoogle Scholar
  72. 72.
    Nkansah MK, Thakral D, Shapiro EM (2011) Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-Based cell tracking. Magn Reson Med 65:1776–1785CrossRefGoogle Scholar
  73. 73.
    Xu C, Miranda-Nieves D, Ankrum JA, Matthiesen ME, Phillips JA, Roes I, Wojtkiewicz GR, Juneja V, Kultima JR, Zhao W, Vemul PK, Lin CP, Nahrendorf M, Karp JM (2012) Tracking mesenchymal stem cells with iron oxide nanoparticle loaded poly(lactide-co-glycolide) microparticles. Nano Lett 12(8):4131–4139CrossRefGoogle Scholar
  74. 74.
    Granot D, Nkansah MK, Bennewitz MF, Tang KS, Markakis EA, Shapiro EM (2014) Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking. Magn Reson Med 71(3):1238–1250CrossRefGoogle Scholar
  75. 75.
    Zhou S, Sun J, Sun L, Dai Y, Liu L, Li X, Wang J, Weng J, Jia W, Zhang Z (2008) Preparation and characterization of interferon-loaded magnetic biodegradable mcrospheres. J Biomed Mater Res Part B Appl Biomater 87:189–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Abdol-Rahim Faramarzi
    • 1
  • Jalal Barzin
    • 1
    Email author
  • Hamid Mobedi
    • 2
  1. 1.Biomaterials DepartmentIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Novel Drug Delivery Systems DepartmentIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations