Skip to main content
Log in

Studies of inherent mixing and physical properties for green polymer blends comprising natural polyphenol and biodegradable polymer with aliphatic-aromatic backbone

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The functional blends of green materials are of great interest. In this study, we discovered a rare case of inherent miscibility in blends comprising a biodegradable polymer, poly(butylene adipate-co-butylene terephthalate) [P(BA-co-BT)], and a biocompatible natural polyphenol, catechin. According to the homogeneous phase morphology and single composition-dependent Tg (obtained from the microscopy and thermal analysis measurements), this work demonstrated that a natural polyphenol could be intimately mixed with a biodegradable copolyester showing a special aliphatic-aromatic backbone. The results of IR spectra and equilibrium melting point depression further indicated that it existed intermolecular interactions in the blends. We suggest that the molecular mixing between catechin and P(BA-co-BT) should be attributed to the preferable interactions of hydrogen bonding. Physical properties were also discussed in detail with studying the crystallization property of the blends. The nonisothermal crystallization of P(BA-co-BT) was also found to be influenced by the catechin in the blends. By the analysis results of the Mo model, it demonstrated that the rate dependent parameter, F(T), was increased as the catechin content was increased in the blends. In indicated that the rate of nonisothermal crystallization of P(BA-co-BT) was decreased with the addition of catechin in the blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hikima Y, Morikawa J, Hashimoto T (2013) Macromolecules 46:1582–1590

    Article  CAS  Google Scholar 

  2. Barrett JSF, Abdala AA, Srienc F (2014) Macromolecules 47:3926–3941

    Article  CAS  Google Scholar 

  3. Bagheri M, Motirasoul F (2012) e-Polymers. Article Number 087

  4. Wang X, Zhuang Y, Dong L (2012) J Appl Polym Sci 126:1876–1884

    Article  CAS  Google Scholar 

  5. Ojijo V, Ray SS, Sadiku R (2012) ACS Appl Mater Interfaces 4:6689–6700

    Google Scholar 

  6. Nimah H, Woo EM, Nurkhamidah S (2014) J Polym Res 21. doi:10.1007/s10965-013-0339-6

  7. Su CC, Woo EM, Hsieh YT (2013) Phys Chem Chem Phys 15:2495–2506

    Article  CAS  Google Scholar 

  8. Shieh YT, Twu YK, Su CC, Lin RH, Liu GL (2010) J Polym Sci B Polym Phys 48:983–989

    Article  CAS  Google Scholar 

  9. Anderson S, Zhang J, Wolcott MP (2013) J Polym Environ 21:631–639

    Article  CAS  Google Scholar 

  10. Kong XH, Qi H, Curtis JM (2014) J Appl Polym Sci 131. doi:10.1002/app.40579

  11. Ishioka R, Kitakuni E, Ichikawa Y (2002) In: Doi Y, Steinbüchel A (eds) Polyesters III: applications and commercial products, vol 4. Biopolymer, Weinheim, Germany, pp 275–298

  12. Gruber P, O’Brien M (2002) In: Doi Y, Steinbüchel A (eds) Polyesters III: applications and commercial products, vol 4. Biopolymer, Weinheim, Germany, pp 235–249

  13. Aarar J, Gruys KJ (2002) In: Doi Y, Steinbüchel A (eds) Polyesters III: applications and commercial products, vol 4. Biopolymer, Weinheim, Germany, pp 53–90

  14. Gan Z, Kuwabara K, Yamamoto M, Abe H, Doi Y (2004) Polym Degrad Stab 83:289–300

    Article  CAS  Google Scholar 

  15. Cranston E, Kawada J, Raymond S, Morin FG, Marchessault RH (2003) Biomacromolecules 4:995–999

    Article  CAS  Google Scholar 

  16. Kuwabara K, Gan Z, Nakamura T, Abe H, Doi Y (2002) Biomacromolecules 3:390–396

    Article  CAS  Google Scholar 

  17. Zhao Y, Qiu Z (2015) RSC Adv 5:49216–49223

    Article  CAS  Google Scholar 

  18. Lugito G, Woo EM (2015) Soft Matter 11:908–917

    Article  CAS  Google Scholar 

  19. Zhang J, Fujizawa S, Isogai A, Hikima T, Takata M, Iwata T (2014) Polym Degrad Stab 110:529–536

    Article  CAS  Google Scholar 

  20. Kuo SW, Chen CJ (2012) Macromolecules 45:2442–2452

    Article  CAS  Google Scholar 

  21. Lee LT, Woo EM, Hou SS, Förster S (2006) Polymer 47:8350–8359

    Article  CAS  Google Scholar 

  22. Papageorgiou GZ, Grigoriadou I, Andriotis E, Bikiaris DN, Panayiotou C (2013) Ind Eng Chem Res 52:11948–11955

    Article  CAS  Google Scholar 

  23. Madhan B, Subramanian V, Rao JR, Nair BU, Ramasami T (2005) Int J Biol Macromol 37:47–53

    Article  CAS  Google Scholar 

  24. Zhu B, Li J, He Y, Yoshie N, Inoue Y (2003) Macromol Biosci 3:684–693

    Article  CAS  Google Scholar 

  25. Kuo SW, Chan SC, Chang FC (2002) Polymer 43:3653–3660

    Article  CAS  Google Scholar 

  26. Gordon M, Taylor JS (1952) J Appl Chem 2:493–500

    Article  CAS  Google Scholar 

  27. Kwei TK (1984) J Polym Sci Polym Lett Ed 22:307–313

    Article  CAS  Google Scholar 

  28. Coleman MM, Graf JF, Painter PC (1991) Specific interactions and the miscibility of polymer blends. Technomic, Lancaster University

  29. Hoffman JD, Weeks JJ (1962) J Res Natl Bur Standards A 66:13–28

    Article  Google Scholar 

  30. Zhang H, Bhagwagar DE, Graf JF, Painter PC, Coleman MM (1994) Polymer 35:5379–5397

    Article  CAS  Google Scholar 

  31. Lee LT, Woo EM (2006) J Polym Sci B Polym Phys 44:1339–1350

    Article  CAS  Google Scholar 

  32. Liu X, Wu Q (2002) Eur Poly J 38:1383–1389

    Article  CAS  Google Scholar 

  33. Auliawan A, Woo EM (2012) J Appl Polym Sci 125:E444–E458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by basic research grants of MOST 104-2221-E-035-079- and MOST 105-2221-E-035-091- from Taiwan’s Ministry of Science and Technology (MOST), to which the authors express their gratitude. The authors appreciate the Precision Instrument Support Center of Feng Chia University in helping the SEM measurements of our works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ting Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, LT., Wu, MC., Yang, CT. et al. Studies of inherent mixing and physical properties for green polymer blends comprising natural polyphenol and biodegradable polymer with aliphatic-aromatic backbone. J Polym Res 23, 255 (2016). https://doi.org/10.1007/s10965-016-1153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1153-8

Keywords

Navigation