Extensional rheology, cellular structure, mechanical behavior relationships in HMS PP/montmorillonite foams with similar densities

Abstract

The main goal of this work is to analyze the relationships between the extensional rheological behavior of solid nanocomposites based on high melt strength polypropylene (HMS PP) and montmorillonites (MMT) and the cellular structure and mechanical properties of foams produced from these materials. For this purpose two systems have been analyzed. The first one incorporates organomodified MMT and a compatibilizer and the second system contains natural clays and is produced without the compatibilizer. Results indicate that the extensional rheological behavior of both materials is completely different. The strain hardening of the polymer containing organomodified clays decreases as the clay content increases. As a consequence, the open cell content of this material increases with the clay content and hence, the mechanical properties get worse. However, in the materials produced with natural clays this relationship is not so clear. While no changes are detected in the extensional rheological behavior by adding these particles, the nano-filled materials show an open cell structure, opposite to the closed cell structure of the pure polymer, which is caused by the fact of having particle agglomerates with a size larger than the thickness of the cell walls and a poor compatibility between the clays and the polymer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Tripathi D (2002) Practical guide to polypropylene. Rapra Technology Limited, Shrewsbury

    Google Scholar 

  2. 2.

    He C, Costeux S, Wood-Adams P, Dealy JM (2003) Polymer 44:7181–7188

    CAS  Article  Google Scholar 

  3. 3.

    Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) J Rheol 48:895–914

    CAS  Article  Google Scholar 

  4. 4.

    Laguna-Gutierrez E, Van Hooghten R, Moldenaers P, Rodriguez-Perez MA (2015) J Appl Polym Sci 132:42430(1)–42430(14)

    Google Scholar 

  5. 5.

    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  6. 6.

    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Compos Part B-Eng 39:933–961

    Article  Google Scholar 

  7. 7.

    Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC (2001) Chem Mater 13:3516–3523

    CAS  Article  Google Scholar 

  8. 8.

    Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) J Appl Polym Sci 85:1562–1570

    CAS  Article  Google Scholar 

  9. 9.

    Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67:87–92

    CAS  Article  Google Scholar 

  10. 10.

    Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119–1198

    CAS  Article  Google Scholar 

  11. 11.

    Krump H, Luyt AS, Hudec I (2006) Mater Lett 60:2877–2880

    CAS  Article  Google Scholar 

  12. 12.

    Kiliaris P, Papaspyrides CD (2010) Prog Polym Sci 35:902–958

    CAS  Article  Google Scholar 

  13. 13.

    Galindo-Rosales FJ, Moldenaers P, Vermant J (2011) Macromol Mater Eng 296:311–340

    Article  Google Scholar 

  14. 14.

    Koo CM, Kym JH, Wang KH, Chung IJ (2005) J Polym Sci Pol Phys 43:158:167

  15. 15.

    Park JU, Kim JL, Kim DH, Ahn KH, Lee SJ, Cho KS (2006) Macromol Res 14:318–323

    CAS  Article  Google Scholar 

  16. 16.

    Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) Nano Lett 1:295–298

    CAS  Article  Google Scholar 

  17. 17.

    Mittal V (2014) Polymer nanocomposite foams. CRC Press, Boca Raton

    Google Scholar 

  18. 18.

    Bhattacharya S, Gupta RK, Jollands M, Bhattacharya SN (2009) Polym Eng Sci 49:2070–2084

    CAS  Article  Google Scholar 

  19. 19.

    Su FH, Yan JH, Huang HX (2011) J Appl Polym Sci 119:1230–1238

    CAS  Article  Google Scholar 

  20. 20.

    Taki K, Yanagimoto T, Funami E, Okamoto M, Ohshima M (2004) Polym Eng Sci 44:1004–1011

    CAS  Article  Google Scholar 

  21. 21.

    Zheng WG, Lee YH, Park CB (2010) J Appl Polym Sci 117:2972–2979

    CAS  Google Scholar 

  22. 22.

    Zhai W, Kuboki T, Wang L, Park CB, Lee EK, Naguib HE (2010) Ind Eng Chem Res 49:9834–9845

    CAS  Article  Google Scholar 

  23. 23.

    Alexandre M, Dubois P (2000) Mater Sci Eng 28:1–63

    Article  Google Scholar 

  24. 24.

    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357–401

    CAS  Article  Google Scholar 

  25. 25.

    Zhang Q, Fu Q, Jiang L, Lei Y (2000) Polym Int 49:1561–1564

    CAS  Article  Google Scholar 

  26. 26.

    Kim K, Kim H, Lee J (2001) Polym Eng Sci 41:1963–1969

    CAS  Article  Google Scholar 

  27. 27.

    Dong Y, Bhattacharyya D (2008) Compos Part A-Appl S 39:1177–1191

    Article  Google Scholar 

  28. 28.

    Lee SH, Cho E, Youn JR (2007) J Appl Polym Sci 103:3506–3515

    CAS  Article  Google Scholar 

  29. 29.

    Kato M, Usuki A, Okada A (1997) J Appl Polym Sci 66:1781–1785

    CAS  Article  Google Scholar 

  30. 30.

    Lertwimolnun W, Vergnes B (2005) Polymer 46:3462–3471

    CAS  Article  Google Scholar 

  31. 31.

    Modesti M, Lorenzetti A, Bon D, Besco S (2005) Polymer 46:10237–10245

    CAS  Article  Google Scholar 

  32. 32.

    Zhai W, Park CB, Kontopoulou M (2011) Ind Eng Chem Res 50:7282–7289

    CAS  Article  Google Scholar 

  33. 33.

    Laguna-Gutierrez E, Van Hooghten R, Moldenaers P, Rodriguez-Perez MA (2015) J Appl Polym Sci 132:42828(1)–42828(12)

    Google Scholar 

  34. 34.

    Gibson LJ (1989) Mater Sci Eng A-Struct 110:1–36

    Article  Google Scholar 

  35. 35.

    Saiz-Arroyo C, de Saja JA, Velasco JI, Rodriguez-Perez MA (2012) J Mater Sci 47:5680–5692

    CAS  Article  Google Scholar 

  36. 36.

    Saiz-Arroyo C, Rodriguez-Perez MA, Velasco JI, de Saja JA (2013) Compos Part B-Eng 48:40–50

    CAS  Article  Google Scholar 

  37. 37.

    Saiz-Arroyo C, Rodriguez-Perez MA, Tirado J, Lopez-Gil A, de Saja JA (2013) Polym Int 62:1324–1333

    CAS  Article  Google Scholar 

  38. 38.

    Pinto J, Solorzano E, Rodriguez-Perez MA, de Saja JA (2013) J Cell Plast 49:555–575

    CAS  Article  Google Scholar 

  39. 39.

    Gong W, Gao J, Jiang M, He L, Yu J, Zhu J (2011) J Appl Polym Sci 122:2907–2914

    CAS  Article  Google Scholar 

  40. 40.

    Rodriguez-Perez MA, de Saja JA (1999) Cell Polym 18:1–20

    CAS  Google Scholar 

  41. 41.

    Almanza O, Rodriguez-Perez MA, de Saja JA (2001) Polymer 42:7117–7126

    CAS  Article  Google Scholar 

  42. 42.

    Rodriguez-Perez MA, Diez-Gutierrez S, de Saja JA (1998) Polym Eng Sci 38:831–837

    CAS  Article  Google Scholar 

  43. 43.

    Perrin-Sarazin F, Ton-That MT, Bureau MN, Denault J (2005) Polymer 46:11624–11634

    CAS  Article  Google Scholar 

  44. 44.

    Lee ST (2000) Foam extrusion: principles and practice. Technomic Publishing Company, Lancaster, Pennsylvania

    Google Scholar 

  45. 45.

    Stange J, Uhl C, Münstedt H (2005) J Rheol 49:1059–1079

    CAS  Article  Google Scholar 

  46. 46.

    Chaudhary AK, Jayaraman K (2011) Polym Eng Sci 51:1749–1756

    CAS  Article  Google Scholar 

  47. 47.

    Dealy JM, Wang J (2013) Melt rheology and its applications in the plastic industry. Springer Science + Business Media, Dordrecht

    Google Scholar 

  48. 48.

    Stange J, Münstedt H (2006) J Cell Plast 42:445–467

    CAS  Article  Google Scholar 

  49. 49.

    Takahashi T, Nakajima H, Masubuchi Y, Takimoto J, Koyama K (1998) Sen'i Gakkaishi 54:538–543

    CAS  Article  Google Scholar 

  50. 50.

    Takahashi T, Wu W, Toda H, Takimoto J, Akatsuka T, Koyama K (1997) J Non-Newton Fluid 68:259–269

    CAS  Article  Google Scholar 

  51. 51.

    Kobayashi M, Takahashi T, Takimoto J, Koyama K (1996) Polymer 37:3745–3747

    CAS  Article  Google Scholar 

  52. 52.

    Kobayashi M, Takahashi T, Takimoto J, Koyama K (1995) Polymer 36:3927–3933

    Article  Google Scholar 

  53. 53.

    Le Meins JF, Moldenaers P, Mewis J (2003) Rheol Acta 42:184–190

    CAS  Article  Google Scholar 

  54. 54.

    Naguib HE, Park CB, Panzer U, Reichelt N (2002) Polym Eng Sci 42:1481–1492

    CAS  Article  Google Scholar 

  55. 55.

    Rodriguez-Perez MA, Alvarez-Lainez M, de Saja JA (2009) J Appl Polym Sci 114:1176–1186

    CAS  Article  Google Scholar 

  56. 56.

    Lee LJ, Zeng C, Cao X, Han H, Shen J, Xu G (2005) Compos Sci Technol 65:2344–2363

    CAS  Article  Google Scholar 

  57. 57.

    Lee ST, Park CB, Ramesh NS (2007) Polymeric foams: science and technology. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

Financial support from PIRTU contract of E. Laguna-Gutierrez by Junta of Castile and Leon (EDU/289/2011) and cofinanced by the European Social Fund is gratefully acknowledged. Cristina Saiz-Arroyo would like to acknowledge Spanish Ministry of Economy and Competitiveness (MINECO) via Torres Quevedo Program (PTQ-12-05504). Finally, financial assistance from MINECO and FEDER program (MAT 2012 – 34901) MINECO, FEDER, UE (MAT2015-69234-R) and the Junta de Castile and Leon (VA035U13) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ester Laguna-Gutierrez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laguna-Gutierrez, E., Lopez-Gil, A., Saiz-Arroyo, C. et al. Extensional rheology, cellular structure, mechanical behavior relationships in HMS PP/montmorillonite foams with similar densities. J Polym Res 23, 251 (2016). https://doi.org/10.1007/s10965-016-1143-x

Download citation

Keywords

  • Extensional rheology
  • Polymer foams
  • Nanocomposites
  • Structure-property relations
  • Polypropylene