Abstract
The main goal of this work is to analyze the relationships between the extensional rheological behavior of solid nanocomposites based on high melt strength polypropylene (HMS PP) and montmorillonites (MMT) and the cellular structure and mechanical properties of foams produced from these materials. For this purpose two systems have been analyzed. The first one incorporates organomodified MMT and a compatibilizer and the second system contains natural clays and is produced without the compatibilizer. Results indicate that the extensional rheological behavior of both materials is completely different. The strain hardening of the polymer containing organomodified clays decreases as the clay content increases. As a consequence, the open cell content of this material increases with the clay content and hence, the mechanical properties get worse. However, in the materials produced with natural clays this relationship is not so clear. While no changes are detected in the extensional rheological behavior by adding these particles, the nano-filled materials show an open cell structure, opposite to the closed cell structure of the pure polymer, which is caused by the fact of having particle agglomerates with a size larger than the thickness of the cell walls and a poor compatibility between the clays and the polymer.
This is a preview of subscription content, access via your institution.












References
- 1.
Tripathi D (2002) Practical guide to polypropylene. Rapra Technology Limited, Shrewsbury
- 2.
He C, Costeux S, Wood-Adams P, Dealy JM (2003) Polymer 44:7181–7188
- 3.
Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) J Rheol 48:895–914
- 4.
Laguna-Gutierrez E, Van Hooghten R, Moldenaers P, Rodriguez-Perez MA (2015) J Appl Polym Sci 132:42430(1)–42430(14)
- 5.
Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge
- 6.
Fu SY, Feng XQ, Lauke B, Mai YW (2008) Compos Part B-Eng 39:933–961
- 7.
Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung TC (2001) Chem Mater 13:3516–3523
- 8.
Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL (2002) J Appl Polym Sci 85:1562–1570
- 9.
Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1998) J Appl Polym Sci 67:87–92
- 10.
Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119–1198
- 11.
Krump H, Luyt AS, Hudec I (2006) Mater Lett 60:2877–2880
- 12.
Kiliaris P, Papaspyrides CD (2010) Prog Polym Sci 35:902–958
- 13.
Galindo-Rosales FJ, Moldenaers P, Vermant J (2011) Macromol Mater Eng 296:311–340
- 14.
Koo CM, Kym JH, Wang KH, Chung IJ (2005) J Polym Sci Pol Phys 43:158:167
- 15.
Park JU, Kim JL, Kim DH, Ahn KH, Lee SJ, Cho KS (2006) Macromol Res 14:318–323
- 16.
Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usuki A (2001) Nano Lett 1:295–298
- 17.
Mittal V (2014) Polymer nanocomposite foams. CRC Press, Boca Raton
- 18.
Bhattacharya S, Gupta RK, Jollands M, Bhattacharya SN (2009) Polym Eng Sci 49:2070–2084
- 19.
Su FH, Yan JH, Huang HX (2011) J Appl Polym Sci 119:1230–1238
- 20.
Taki K, Yanagimoto T, Funami E, Okamoto M, Ohshima M (2004) Polym Eng Sci 44:1004–1011
- 21.
Zheng WG, Lee YH, Park CB (2010) J Appl Polym Sci 117:2972–2979
- 22.
Zhai W, Kuboki T, Wang L, Park CB, Lee EK, Naguib HE (2010) Ind Eng Chem Res 49:9834–9845
- 23.
Alexandre M, Dubois P (2000) Mater Sci Eng 28:1–63
- 24.
Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357–401
- 25.
Zhang Q, Fu Q, Jiang L, Lei Y (2000) Polym Int 49:1561–1564
- 26.
Kim K, Kim H, Lee J (2001) Polym Eng Sci 41:1963–1969
- 27.
Dong Y, Bhattacharyya D (2008) Compos Part A-Appl S 39:1177–1191
- 28.
Lee SH, Cho E, Youn JR (2007) J Appl Polym Sci 103:3506–3515
- 29.
Kato M, Usuki A, Okada A (1997) J Appl Polym Sci 66:1781–1785
- 30.
Lertwimolnun W, Vergnes B (2005) Polymer 46:3462–3471
- 31.
Modesti M, Lorenzetti A, Bon D, Besco S (2005) Polymer 46:10237–10245
- 32.
Zhai W, Park CB, Kontopoulou M (2011) Ind Eng Chem Res 50:7282–7289
- 33.
Laguna-Gutierrez E, Van Hooghten R, Moldenaers P, Rodriguez-Perez MA (2015) J Appl Polym Sci 132:42828(1)–42828(12)
- 34.
Gibson LJ (1989) Mater Sci Eng A-Struct 110:1–36
- 35.
Saiz-Arroyo C, de Saja JA, Velasco JI, Rodriguez-Perez MA (2012) J Mater Sci 47:5680–5692
- 36.
Saiz-Arroyo C, Rodriguez-Perez MA, Velasco JI, de Saja JA (2013) Compos Part B-Eng 48:40–50
- 37.
Saiz-Arroyo C, Rodriguez-Perez MA, Tirado J, Lopez-Gil A, de Saja JA (2013) Polym Int 62:1324–1333
- 38.
Pinto J, Solorzano E, Rodriguez-Perez MA, de Saja JA (2013) J Cell Plast 49:555–575
- 39.
Gong W, Gao J, Jiang M, He L, Yu J, Zhu J (2011) J Appl Polym Sci 122:2907–2914
- 40.
Rodriguez-Perez MA, de Saja JA (1999) Cell Polym 18:1–20
- 41.
Almanza O, Rodriguez-Perez MA, de Saja JA (2001) Polymer 42:7117–7126
- 42.
Rodriguez-Perez MA, Diez-Gutierrez S, de Saja JA (1998) Polym Eng Sci 38:831–837
- 43.
Perrin-Sarazin F, Ton-That MT, Bureau MN, Denault J (2005) Polymer 46:11624–11634
- 44.
Lee ST (2000) Foam extrusion: principles and practice. Technomic Publishing Company, Lancaster, Pennsylvania
- 45.
Stange J, Uhl C, Münstedt H (2005) J Rheol 49:1059–1079
- 46.
Chaudhary AK, Jayaraman K (2011) Polym Eng Sci 51:1749–1756
- 47.
Dealy JM, Wang J (2013) Melt rheology and its applications in the plastic industry. Springer Science + Business Media, Dordrecht
- 48.
Stange J, Münstedt H (2006) J Cell Plast 42:445–467
- 49.
Takahashi T, Nakajima H, Masubuchi Y, Takimoto J, Koyama K (1998) Sen'i Gakkaishi 54:538–543
- 50.
Takahashi T, Wu W, Toda H, Takimoto J, Akatsuka T, Koyama K (1997) J Non-Newton Fluid 68:259–269
- 51.
Kobayashi M, Takahashi T, Takimoto J, Koyama K (1996) Polymer 37:3745–3747
- 52.
Kobayashi M, Takahashi T, Takimoto J, Koyama K (1995) Polymer 36:3927–3933
- 53.
Le Meins JF, Moldenaers P, Mewis J (2003) Rheol Acta 42:184–190
- 54.
Naguib HE, Park CB, Panzer U, Reichelt N (2002) Polym Eng Sci 42:1481–1492
- 55.
Rodriguez-Perez MA, Alvarez-Lainez M, de Saja JA (2009) J Appl Polym Sci 114:1176–1186
- 56.
Lee LJ, Zeng C, Cao X, Han H, Shen J, Xu G (2005) Compos Sci Technol 65:2344–2363
- 57.
Lee ST, Park CB, Ramesh NS (2007) Polymeric foams: science and technology. CRC Press, Boca Raton
Acknowledgements
Financial support from PIRTU contract of E. Laguna-Gutierrez by Junta of Castile and Leon (EDU/289/2011) and cofinanced by the European Social Fund is gratefully acknowledged. Cristina Saiz-Arroyo would like to acknowledge Spanish Ministry of Economy and Competitiveness (MINECO) via Torres Quevedo Program (PTQ-12-05504). Finally, financial assistance from MINECO and FEDER program (MAT 2012 – 34901) MINECO, FEDER, UE (MAT2015-69234-R) and the Junta de Castile and Leon (VA035U13) are gratefully acknowledged.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Laguna-Gutierrez, E., Lopez-Gil, A., Saiz-Arroyo, C. et al. Extensional rheology, cellular structure, mechanical behavior relationships in HMS PP/montmorillonite foams with similar densities. J Polym Res 23, 251 (2016). https://doi.org/10.1007/s10965-016-1143-x
Received:
Accepted:
Published:
Keywords
- Extensional rheology
- Polymer foams
- Nanocomposites
- Structure-property relations
- Polypropylene