Skip to main content
Log in

Optical and catalytic properties of Au-Ag bimetallic nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The gold-silver (Au-Ag) bimetallic nanocomposites were prepared in acid aqueous solution by co-reduction of chloroauric acid and silver nitrate with sodium borohydride in the presence of well-defined diblock copolymer poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine) UV–vis spectroscopy and X-ray diffraction revealed the formed nanocomposites were truly bimetallic nanoparticles rather than the physical mixture of monometallic nanoparticles. The bimetallic nanocomposites showed optical properties corresponding to both their metallic composition and system temperature. The surface plasmon resonance showed a red-shift with increase of the ratio of Au in the nanocomposites, and appeared in their temperature changes. The bimetallic nanocomposites exhibited surface plasmon band corresponding to Au below 4 °C, corresponding to both Au and Ag increasing to 42 °C, and corresponding to Ag above 45 °C. When these bimetallic nanocomposites were applied to catalyze 4-nitrophenol to 4-aminophenol, their catalytic activity first increased and then decreased and finally increased again with the temperature change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tao F (2012) Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem Soc Rev 41:7977–7979

    Article  CAS  Google Scholar 

  2. Siriwatcharapiboon W, Tinnarat N, Supaphol P (2013) Preparation and characterization of electrospun poly(vinyl alcohol) nanofibers containing platinum or platinum-ruthenium nanoparticles. J Polym Res 20:40–47

    Article  Google Scholar 

  3. Monga A, Pal B (2015) Preparation and characterization of different shapes of Au-Ag bimetallic nanocomposites for enhanced physicochemical properties. Colloids Surf A Physicochem Eng Asp 481:158–166

    Article  CAS  Google Scholar 

  4. Li J, Wang W, Zhao L, Rong L, Lan S, Sun H, Zhang H, Yang B (2015) Hydroquinone-assisted synthesis of branched Au–Ag nanoparticles with polydopamine coating as highly efficient photothermal agents. ACS Appl Mater Interfaces 7:11613–11623

    Article  CAS  Google Scholar 

  5. Jiang HL, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21:13705–13725

    Article  CAS  Google Scholar 

  6. Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901

    Article  CAS  Google Scholar 

  7. Xiang Y, Wu X, Liu D, Li Z, Chu W, Feng L, Zhang K, Zhou W, Xie S (2008) Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating. Langmuir 24:3465–3470

    Article  CAS  Google Scholar 

  8. Tsuji M, Nakamura N, Ogino M, Ikedo K, Matsunaga M (2012) Crystal structures and growth mechanisms of octahedral and decahedral Au@Ag core-shell nanocrystals prepared by a two-step reduction method. Cryst Eng Comm 14:7639–7647

    Article  CAS  Google Scholar 

  9. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays of surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1:18–52

    CAS  Google Scholar 

  10. Cao YC, Jin R, Nam J, Thaxton CS, Mirkin CA (2003) Raman dye-labeled nanoparticle probes for proteins. J Am Chem Soc 125:14676–14677

    Article  CAS  Google Scholar 

  11. Neppolian B, Wang C, Ashokkumar M (2014) Sonochemicaly synthesized mono and bimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity. Ultrason Sonochem 21:1948–1953

    Article  CAS  Google Scholar 

  12. An Q, Yu M, Zhang Y, Ma W, Guo J, Wang C (2012) Fe3O4@carbon microsphere supported Ag-Au bimetallic nanocrystals with the enhanced catalytic activity and selectivity for the reduction of nitroaromatic compounds. J Phys Chem C 116:22432–22440

    Article  CAS  Google Scholar 

  13. Fustin CA, Colard C, Filali M, Guillet P, Duwez AS, Meier MAR, Schubert US, Gohy JF (2006) Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers. Langmuir 22:6690–6695

    Article  CAS  Google Scholar 

  14. Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun 44:4580–4598

    Article  Google Scholar 

  15. Mohammed HS, Shipp DA (2006) Uniform sub-micron polymer spheres coated with Ag nanoparticles. Macromol Rapid Commun 27:1774–1778

    Article  CAS  Google Scholar 

  16. Naeem H, Farooqi ZH, Shah LA, Siqqiq M (2012) Synthesis and characterization of p(NIPAM-AA-AAm) microgels for tuning of optical properties of silver nanoparticles. J Polym Res 19:9950–9959

    Article  Google Scholar 

  17. Chen X, An Y, Zhao D, He Z, Zhang Y, Cheng J, Shi L (2008) Core-shell-corona Au-micelle composites with a tunable smart hybrid shell. Langmuir 24:8198–8204

    Article  CAS  Google Scholar 

  18. Gupta S, Uhlmann P, Agrawal M, Chapuis S, Oertel U, Stamm M (2008) Immobilization of silver nanoparticles on responsive polymer brushes. Macromolecules 41:2874–2879

    Article  CAS  Google Scholar 

  19. Wang G, Sun W (2006) Optical limiting of gold nanoparticle aggregates induced by electrolytes. J Phys Chem B 110:20901–20905

    Article  CAS  Google Scholar 

  20. Luo S, Xu J, Zhu Z, Wu C, Liu S (2006) Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J Phys Chem B 110:9132–9139

    Article  CAS  Google Scholar 

  21. Schild HG (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  22. Ciampolini M, Nardi N (1966) Five-coordinated high-spin complexes of bivalent cobalt, nickel, and copper with tris (2-dimethylaminoethyl) amine. Inorg Chem 5:41–44

    Article  CAS  Google Scholar 

  23. Xu Y, Shi L, Ma R, Zhang W, An Y, Zhu X (2007) Synthesis and micellization of thermo-and pH-responsive block copolymer of poly (N-isopropylacrylamide)-block-poly (4-vinylpyridine). Polymer 48:1711–1717

    Article  CAS  Google Scholar 

  24. Cha SK, Mun JH, Chang T, Kim SY, Kim JY, Jin HM, Lee JY, Shin J, Kim KH, Kim SO (2015) Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS Nano 9:5536–5543

    Article  CAS  Google Scholar 

  25. Chatterjee U, Jewrajka SK (2007) Synthesis of block copolymer-stabilized Au-Ag alloy nanoparticles and fabrication of poly (methyl methacrylate)/Au-Ag nanocomposite film. J Colloid Interface Sci 313:717–723

    Article  CAS  Google Scholar 

  26. Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533

    Article  CAS  Google Scholar 

  27. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  28. Mulvaney P, Giersig M, Henglein A (1993) Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles. J Phys Chem 97:7061–7064

    Article  CAS  Google Scholar 

  29. Idorow SN, Bronstein LM, Kabachii YA, Valetsky PM, Soo PL, Maysinger D, Eisenberg A (2004) Influence of metalation on the morphologies of poly (ethylene oxide)-block-poly(4-vinylpyridine) block copolymer micelles. Langmuir 20:3543–3550

    Article  Google Scholar 

  30. Xu H, Xu J, Zhu Z, Liu H, Liu S (2006) In-situ formation of silver nanoparticles with tunable spatial distribution at the poly (N-isopropylacrylamide) corona of unimolecular micelles. Macromolecules 39:8451–8455

    Article  CAS  Google Scholar 

  31. Vinoth R, Babu SG, Bahnemann D, Neppolian B (2015) Nitrogen doped reduced graphene oxide hydrid metal free catalysts for effective reduction of 4-nitrophenol. Sci Adv Mater 7:1443–1449

    Article  CAS  Google Scholar 

  32. Bi S, Li K, Chen X, Fu W, Chen L, Sheng H, Yang Q (2014) Preparation and catalytic properties of composites with palladium nanoparticles and poly(methacrylic acid) microspheres. Polym Compos 35:2251–2260

    Article  CAS  Google Scholar 

  33. Chen X, Wang Z, Bi S, Li K, Du R, Wu C, Chen L (2016) Combining catalysis and separation on a PVDF/Ag composite membrane allows timely separation of products during reaction process. Chem Eng J 295:518–529

    Article  CAS  Google Scholar 

  34. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.51403149, 21375092, 21575097) and Taizhou City Natural Science Foundation under grant (No.15gy53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Han, D. & He, Z. Optical and catalytic properties of Au-Ag bimetallic nanocomposites. J Polym Res 23, 244 (2016). https://doi.org/10.1007/s10965-016-1135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1135-x

Keywords

Navigation