Skip to main content
Log in

A high molecular weight acrylonitrile copolymer prepared by mixed solvents polymerization: II. effect of DMSO/water ratios on polymerization and stabilization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A bifunctional comonomer β-methylhydrogen itaconate was synthesized to prepare high molecular weight poly [acrylonitrile-co-(β-methylhydrogen itaconate)] [P (AN-co-MHI)] by mixed solvents polymerization, which was used as carbon fiber precursor instead of acrylonitrile terpolymers. The effect of dimethyl sulfoxide (DMSO)/deionized water ratios on the polymerization, structure and stabilization of P (AN-co-MHI) was studied by elemental analysis, UV-Visible Spectroscopy, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The highest viscosity-average molecular weight (76.72 × 104 g/mol) of P(AN-co-MHI) was obtained in the mixed solvents of DMSO/deionized water = 10/90 (wt/wt) due to the zero chain transfer constant of deionized water for radical ~ ~ ~AN·, which is 10 times larger than that of P(AN-co-MHI) copolymers prepared in DMSO solution polymerization under the same conditions and is beneficial to improving the tensile strength of resulting carbon fiber. The composition of P(AN-co-MHI) was controlled by the ratio of DMSO/deionized water in the mixed solvents, it is attributed to the changes of AN/MHI ratio taking part in the polymerization reactions, which is caused by the different solubility of AN in the mixed solvents. From elemental analysis and FTIR studies, it can be found out that the content of MHI in P(AN-co-MHI) copolymer becomes larger with the increase of DMSO content in the mixed solvents. The FTIR, XRD and DSC results show that the stabilization of P(AN-co-MHI) copolymer was significantly improved by MHI compared with PAN homopolymer and poly (acrlonitrile-methyl acrylate-acrylic acid) terpolymer, such as larger extent of stabilization, lower initiation temperature and smaller E a of cyclization, which is beneficial to preparing high performance carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang PP, Bin YZ, Zhang R (2014) Polymer 11(55):2597–2608

    Article  Google Scholar 

  2. Huson MG, Church JS, Kafi AA, Woodhead AL, Khoo J, Kiran MSRN, Bradby JE, Fox BL (2014) Carbon 68:240–249

    Article  CAS  Google Scholar 

  3. Gong Y, Du R, Mo G, Xing XQ, Lü CX, Wu ZH (2014) Polymer 55:4270–4280

    Article  CAS  Google Scholar 

  4. Korhan S, Fasanella NA, Chasiotis I (2014) Carbon 77:442–453

    Article  Google Scholar 

  5. Zhong J, Jiang SY, Tang YF, Gottlieb E, Kim EK, Star A, Matyjaszewski K, Kowalewski T (2014) Chem Sci 5:3315–3319

    Article  CAS  Google Scholar 

  6. Chien AT, Cho S, Joshi YA, Kumar S (2014) Polymer 55(26): 6896–6905

  7. Lei D, Devarayan K, Li XD, Choi WK, Seo MK, Kim BS (2014) Carbon letters 15(4):290–294

    Article  Google Scholar 

  8. Liu J, He, LZ, Ma S, Liang, JY, Zhao Y, Fong H (2015) Polymer 61(25):20–28

  9. Fu ZY, Gui Y, Liu S, Wang Z, Liu BJ, Cao CL, Zhang HX (2014) J Appl Polym Sci 19(131):40834(1–8)

    Google Scholar 

  10. Morris EA, Weisenberger MC, Bradley SB, Abdallah MG, Mecham SJ, Pisipati P, McGrath JE (2014) Polymer 55(25):6471–6482

    Article  CAS  Google Scholar 

  11. Liu YD, Chae HG, Choi YH, Kumar S (2015) J Mater Sci 50(10):3614–3621

    Article  CAS  Google Scholar 

  12. Catta P, Sakata S, Garcia G, Zimmermann JP, Galembeck F, Galembeck F, Giovedi G (2007) J Therm Anal Calorim 87(3):657–659

    Article  Google Scholar 

  13. Ju AQ, Xu HY, Guang SY (2012) J Mater Res. 2012; 20(27): 2668–2676.

  14. Snam J, Daik R, Ahmad I (2014) Materials 07(9):6207–6223

    Article  Google Scholar 

  15. Ju AQ, Yan YF, Wang DW, Luo J, Ge MQ, Li MQ (2014) RSC Adv 4: 64043–64052

  16. Ju AQ, Guang SY, Xu HY (2014) Carbon 54:323–328

    Article  Google Scholar 

  17. Zhao YQ, Wang CG, Wang YX, Zhu B (2009) J Appl Polym Sci 111:3163–6169

    Article  CAS  Google Scholar 

  18. Gupta VB, Kumar S (1981) J Appl Polym Sci 26:1865–1876

    Article  CAS  Google Scholar 

  19. Sen K, Bajaj P, Speekumar TV (2003) J Polym Sci. Part B: Polym Phys41:2949–2958

  20. Ju AQ, Xu HY, Ge MQ (2014) J Therm Anal Calorim 2(115):1037–1047

    Article  Google Scholar 

  21. Nguyen-Thai NU, Hong SC (2013) Macromolecules 46:5882–5889

    Article  CAS  Google Scholar 

  22. Simitzis JC, Georgiou, PC (2015) J Mater Sci 13(50): 4547–4564

  23. Lee KI, Li JH, Fei B, Xin JH (2014) Polym Degrad Stab 105:80–85

    Article  CAS  Google Scholar 

  24. Lee SW, Lee HY, Jang SY, Jo S, Lee H, Choe WH, Lee S, Mittal J (2013) Carbon 55:361–365

    Article  CAS  Google Scholar 

  25. Fraczek AS, Rabiej S, Szparaga G, Pabjanczyk-Wlazlo E, Krol P, Brzezinska M, Blazewicz B, Bogun M (2015) Mater Sci Eng C Mater Bio Appl 51:336–345

    Article  Google Scholar 

  26. Zhang HI, Quan L, Xu LH (2015) Fibers Polym 16(2):263–270

    Article  CAS  Google Scholar 

  27. Dong XZ, Lu CX, Zhou PC, Zhang SC, Wang LY, Li DH (2015) RSC Adv 5(53): 42259–42265

  28. Watt W (1972) Carbon 10:121–125

    Article  CAS  Google Scholar 

  29. Bahl OP, Manocha LM (1974) Carbon 12:417–423

    Article  CAS  Google Scholar 

  30. Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PA (2007) Mater Lett 61:2292–2296

    Article  CAS  Google Scholar 

  31. Quan L, Zhang HL, Xu LH (2015) J Therm Anal Calorim 119(2):1081–1089

    Article  CAS  Google Scholar 

  32. Xu YY, Sun JM, Chen H, Bai LJ (2015) RSC adv 5(47):37780–37788

    Article  CAS  Google Scholar 

  33. Lee YJ, Kim HB, Jeun JP, Lee DS, Koo DH, Kang PH (2015) J Nanosci Nanotechnol 15(8): 6028–6031

  34. Wu XP, Zhang XL, Lu CX, Ling LC (2010) Chin J Polym Sci 28(3):367–376

    Article  CAS  Google Scholar 

  35. Kissinger HE (1957) Anal Chem 29:1702–1704

    Article  CAS  Google Scholar 

  36. Ozawa T (1965) Bull Chem Soc Jpn 38:1881–1885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work from National Natural Science Funds of China (No. 51503086), Natural Science Foundation of Jiangsu Province (No. BK20140159), China Postdoctoral Science Foundation (No. 2014 M561570), Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402195C) and Fundamental Research Funds for the Central Universities (No JUSRP11450) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baojiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, A., Yu, H., Yan, Y. et al. A high molecular weight acrylonitrile copolymer prepared by mixed solvents polymerization: II. effect of DMSO/water ratios on polymerization and stabilization. J Polym Res 23, 208 (2016). https://doi.org/10.1007/s10965-016-1103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1103-5

Keywords

Navigation